Suppose that in a casino, a certain slot machine pays out an average of Php 15, with a standard deviation of Php 5,000. Every play of the game costs a gambler Php 20.
a. Why is the standard deviation so large?
b. If your parent decides to play with this slot machine 5 times, what are the mean and standard deviation of the casino's profit?
c. If the gamblers play with this slot machine 1000 times in a day, what are the mean and standard deviation of the casino's profits?
"a:\\\\You\\,\\,may\\,\\,win\\,\\,much\\,\\,or\\,\\,nothing, the\\,\\,range\\,\\,is\\,\\,wide\\\\b:\\\\EX_1=20-15=5\\\\EX=E\\sum_{1\\leqslant i\\leqslant 5}{X_i}=5EX_1=5\\cdot 5=25\\\\DX=D\\sum_{1\\leqslant i\\leqslant 5}{X_i}=5DX_1=5\\cdot 5000^2=1.25\\times 10^8\\\\\\sigma X=\\sqrt{DX}=\\sqrt{1.25\\times 10^8}=11180.3\\\\c:\\\\EX=E\\sum_{1\\leqslant i\\leqslant 1000}{X_i}=1000EX_1=1000\\cdot 5=5000\\\\DX=D\\sum_{1\\leqslant i\\leqslant 1000}{X_i}=1000DX_1=1000\\cdot 5000^2=2.5\\times 10^{10}\\\\\\sigma X=\\sqrt{DX}=\\sqrt{2.5\\times 10^{10}}=158114"
Comments
Leave a comment