X − n u m b e r o f n o n q u a l i f i e d p a r t s , X B i n ( 100 , 0.05 ) p = 0.05 , n = 100 a : X − 100 p 100 p ( 1 − p ) ∼ N ( 0 , 1 ) P ( X > 2 ) = P ( X − 100 p 100 p ( 1 − p ) > 2 − 100 p 100 p ( 1 − p ) ) ≈ ≈ P ( Z > 2 − 100 ⋅ 0.05 100 ⋅ 0.05 ⋅ 0.95 ) = P ( Z > − 1.37649 ) = Φ ( 1.37649 ) = = 0.9157 b : X − 100 p 100 p ( 1 − p ) ∼ N ( 0 , 1 ) P ( X > 10 ) = P ( X − 100 p 100 p ( 1 − p ) > 10 − 100 p 100 p ( 1 − p ) ) ≈ ≈ P ( Z > 10 − 100 ⋅ 0.05 100 ⋅ 0.05 ⋅ 0.95 ) = P ( Z > 2.29416 ) = Φ ( − 2.29416 ) = = 0.01089 X-number\,\,of\,\,nonqualified\,\,parts,X~Bin\left( 100,0.05 \right) \\p=0.05,n=100\\a:\\\frac{X-100p}{\sqrt{100p\left( 1-p \right)}}\sim N\left( 0,1 \right) \\P\left( X>2 \right) =P\left( \frac{X-100p}{\sqrt{100p\left( 1-p \right)}}>\frac{2-100p}{\sqrt{100p\left( 1-p \right)}} \right) \approx \\\approx P\left( Z>\frac{2-100\cdot 0.05}{\sqrt{100\cdot 0.05\cdot 0.95}} \right) =P\left( Z>-1.37649 \right) =\varPhi \left( 1.37649 \right) =\\=0.9157\\b:\\\frac{X-100p}{\sqrt{100p\left( 1-p \right)}}\sim N\left( 0,1 \right) \\P\left( X>10 \right) =P\left( \frac{X-100p}{\sqrt{100p\left( 1-p \right)}}>\frac{10-100p}{\sqrt{100p\left( 1-p \right)}} \right) \approx \\\approx P\left( Z>\frac{10-100\cdot 0.05}{\sqrt{100\cdot 0.05\cdot 0.95}} \right) =P\left( Z>2.29416 \right) =\varPhi \left( -2.29416 \right) =\\=0.01089 X − n u mb er o f n o n q u a l i f i e d p a r t s , X B in ( 100 , 0.05 ) p = 0.05 , n = 100 a : 100 p ( 1 − p ) X − 100 p ∼ N ( 0 , 1 ) P ( X > 2 ) = P ( 100 p ( 1 − p ) X − 100 p > 100 p ( 1 − p ) 2 − 100 p ) ≈ ≈ P ( Z > 100 ⋅ 0.05 ⋅ 0.95 2 − 100 ⋅ 0.05 ) = P ( Z > − 1.37649 ) = Φ ( 1.37649 ) = = 0.9157 b : 100 p ( 1 − p ) X − 100 p ∼ N ( 0 , 1 ) P ( X > 10 ) = P ( 100 p ( 1 − p ) X − 100 p > 100 p ( 1 − p ) 10 − 100 p ) ≈ ≈ P ( Z > 100 ⋅ 0.05 ⋅ 0.95 10 − 100 ⋅ 0.05 ) = P ( Z > 2.29416 ) = Φ ( − 2.29416 ) = = 0.01089
Comments