Let x be a binomial random variable with n=20 and p = 0.1.
a. Find the formula for the probability distribution of x.
b. Calculate P(X≤4)
c. Calculate the mean and standard deviation of X.
"n=20, \\ p=0.1,\\ q=1-p=1-0.1=0.9."
a. The probability of getting exactly k successes in n independent Bernoulli trials is given by the probability mass function:
"P(X=k)=\\begin{pmatrix} n \\\\ k \\end{pmatrix}\\cdot p^k \\cdot q^{n-k},"where "\\begin{pmatrix} n \\\\ k \\end{pmatrix}=\\cfrac{n! } {k! \\cdot(n-k)! }"
is the binomial coefficient.
"P(X=k)=\\\\=\\begin{pmatrix} 20 \\\\ k \\end{pmatrix}\\cdot 0.1^k \\cdot 0.9^{n-k} =\\\\\n=\\cfrac{20! } {k! \\cdot(20-k)! } \\cdot 0.1^k \\cdot 0.9^{n-k} ."
b.
"P(X\\le4) =\\\\P(X=0)+P(X=1)+\\\\+P(X=2)+P(X=3)+\\\\+P(X=4)=\\\\\n=\\cfrac{20!}{0!\\cdot20!}\\cdot0.1^0\\cdot0.9^{20} +\\\\+\n\\cfrac{20!}{1!\\cdot19!}\\cdot0.1^1\\cdot0.9^{19} +\\\\+\n\\cfrac{20!}{2!\\cdot18!}\\cdot0.1^2\\cdot0.9^{18} +\\\\+\n\\cfrac{20!}{3!\\cdot17!}\\cdot0.1^3\\cdot0.9^{17} +\\\\+\n\\cfrac{20!}{4!\\cdot16!}\\cdot0.1^4\\cdot0.9^{16} =\\\\\n=0.9568."
c. The mean
The standard deviation
Comments
Leave a comment