n=20, p=0.1, q=1−p=1−0.1=0.9.
a. The probability of getting exactly k successes in n independent Bernoulli trials is given by the probability mass function:
P(X=k)=(nk)⋅pk⋅qn−k,where (nk)=k!⋅(n−k)!n!
is the binomial coefficient.
P(X=k)==(20k)⋅0.1k⋅0.9n−k==k!⋅(20−k)!20!⋅0.1k⋅0.9n−k.
b.
P(X≤4)=P(X=0)+P(X=1)++P(X=2)+P(X=3)++P(X=4)==0!⋅20!20!⋅0.10⋅0.920++1!⋅19!20!⋅0.11⋅0.919++2!⋅18!20!⋅0.12⋅0.918++3!⋅17!20!⋅0.13⋅0.917++4!⋅16!20!⋅0.14⋅0.916==0.9568.
c. The mean
μ=np=20⋅0.1=2. The standard deviation
σ=npq=20⋅0.1⋅0.9=1.34.
Comments