Suppose f(x) = 3x^2/2 for - 1 < x < 1. Determine the mean and variance of X.
M(X)=∫−∞+∞xf(x)dx=32∫−11x3dx=3x48∣−11=0M(X)=\int_{-\infty}^{+\infty} xf(x)dx={\frac 3 2}\int_{-1}^{1}x^3 dx={\frac {3x^4} 8}|_{-1}^1=0M(X)=∫−∞+∞xf(x)dx=23∫−11x3dx=83x4∣−11=0
V(X)=M(X2)−M2(X)=M(X2)=∫−∞+∞x2f(x)dx=32∫−11x4dx=3x510∣−11=35V(X)=M(X^2)-M^2(X)=M(X^2)=\int_{-\infty}^{+\infty} x^2f(x)dx={\frac 3 2}\int_{-1}^{1}x^4 dx={\frac {3x^5} {10}}|_{-1}^1={\frac 3 5}V(X)=M(X2)−M2(X)=M(X2)=∫−∞+∞x2f(x)dx=23∫−11x4dx=103x5∣−11=53
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments