Find the variance of the expected value of the probability distribution, X={1, 2, 3, 4, 5} P(X)={.10, .35, .15, .23, .17}
"EX=1\u22c50.1+2\u22c50.35+3\u22c50.15+4\u22c50.23+5\u22c50.17=3.02\\\\\nEX^2=1^2\\cdot 0.1+2^2\\cdot 0.35+3^2\\cdot 0.15+4^2\\cdot 0.23+5^2\\cdot 0.17=10.78\\\\DX=EX^2-\\left( EX \\right) ^2=10.78-3.02^2=1.6596"
Comments
Leave a comment