Find the variance of the expected value of the probability distribution, X={1, 2, 3, 4, 5} P(X)={.10, .35, .15, .23, .17}
EX=1⋅0.1+2⋅0.35+3⋅0.15+4⋅0.23+5⋅0.17=3.02EX2=12⋅0.1+22⋅0.35+32⋅0.15+42⋅0.23+52⋅0.17=10.78DX=EX2−(EX)2=10.78−3.022=1.6596EX=1⋅0.1+2⋅0.35+3⋅0.15+4⋅0.23+5⋅0.17=3.02\\ EX^2=1^2\cdot 0.1+2^2\cdot 0.35+3^2\cdot 0.15+4^2\cdot 0.23+5^2\cdot 0.17=10.78\\DX=EX^2-\left( EX \right) ^2=10.78-3.02^2=1.6596EX=1⋅0.1+2⋅0.35+3⋅0.15+4⋅0.23+5⋅0.17=3.02EX2=12⋅0.1+22⋅0.35+32⋅0.15+42⋅0.23+52⋅0.17=10.78DX=EX2−(EX)2=10.78−3.022=1.6596
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments