Answer to Question #309644 in Statistics and Probability for Sherman

Question #309644

The BRIT Sports Bar sells a large quantity of Guinness every Saturday. From past records, the pub has determined the following probabilities for sales:

 

 

  Number of Crates (X) P(x)

18 0.15

19 0.10

20 0.32

21 0.05

22 0.13

23 0.25

 

a.   Verify that this [P(x)] is a probability distribution.                              

e.   Calculate the variance of the distribution?                                         

f.    Determine the standard deviation of the distribution?                         

 



1
Expert's answer
2022-03-15T09:04:35-0400

a. To verify P(X) is a probability function we have to show that XP(X)=1\sum_{X} P(X) = 1.


xP(x)=P(18)+P(19)+P(20)+P(21)+P(22)+P(23)=0.15+0.10+0.32+0.05+0.13+0.25=1\begin{aligned} \sum_{x} P(x) &= P(18) + P(19) + P(20) + P(21)+P(22)+P(23)\\ &= 0.15+0.10+0.32+0.05+0.13+0.25\\ &=1 \end{aligned}

Hence P(X) is a probability function.


e. Variance(X)=E(X2)(E(X))2\text{Variance}(X) = E(X^2) - (E(X))^2 .


E(X2)=xX2P(X)=1820.15+1920.10+2020.32 +              2120.05+2220.13+2320.25=429.92\begin{aligned} E(X^2) &= \sum_{x} X^2 P(X)\\ & = 18^2*0.15+19^2*0.10+20^2*0.32~+~\\ & ~~~~~~~~~~~~~21^2*0.05+22^2*0.13+23^2*0.25\\ &=429.92 \end{aligned}

E(X)=xXP(X)=180.15+190.10+200.32 +              210.05+220.13+230.25=20.66\begin{aligned} E(X) &= \sum_{x} X P(X)\\ & = 18*0.15+19*0.10+20*0.32~+~\\ & ~~~~~~~~~~~~~21*0.05+22*0.13+23*0.25\\ &=20.66 \end{aligned}


Variance(X)=429.9220.662=429.92426.8356=3.0844\therefore \text{Variance}(X) = 429.92-20.66^2 = 429.92-426.8356 = 3.0844


f. Standard deviation(X)=Var(X)=3.0844=1.7562\text{Standard deviation}(X) = \sqrt{\text{Var}(X)} = \sqrt{3.0844} = 1.7562


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment