a. To verify P(X) is a probability function we have to show that ∑XP(X)=1.
x∑P(x)=P(18)+P(19)+P(20)+P(21)+P(22)+P(23)=0.15+0.10+0.32+0.05+0.13+0.25=1
Hence P(X) is a probability function.
e. Variance(X)=E(X2)−(E(X))2 .
E(X2)=x∑X2P(X)=182∗0.15+192∗0.10+202∗0.32 + 212∗0.05+222∗0.13+232∗0.25=429.92
E(X)=x∑XP(X)=18∗0.15+19∗0.10+20∗0.32 + 21∗0.05+22∗0.13+23∗0.25=20.66
∴Variance(X)=429.92−20.662=429.92−426.8356=3.0844
f. Standard deviation(X)=Var(X)=3.0844=1.7562
Comments
Leave a comment