We have population values 3,5,7,9 population size N=4 and sample size n=3.
Thus, the number of possible samples which can be drawn with replacement is 43=64.
Sample values3,3,33,3,53,3,73,3,93,5,33,5,53,5,73,5,93,7,33,7,53,7,73,7,93,9,33,9,53,9,73,9,95,3,35,3,55,3,75,3,95,5,35,5,55,5,75,5,95,7,35,7,55,7,75,7,95,9,35,9,55,9,75,9,97,3,37,3,57,3,77,3,97,5,37,5,57,5,77,5,97,7,37,7,57,7,77,7,97,9,37,9,57,9,77,9,99,3,39,3,59,3,79,3,99,5,39,5,59,5,79,5,99,7,39,7,59,7,79,7,99,9,39,9,59,9,79,9,9Sample mean(Xˉ)311/313/3511/313/3517/313/3517/319/3517/319/3711/313/3517/313/3517/319/3517/319/3717/319/3723/313/3517/319/3517/319/3717/319/3723/319/3723/325/3517/319/3717/319/3723/319/3723/325/3723/325/39
2) The sampling distribution of the sample mean Xˉ is
Sum=Xˉ311/313/3517/319/3723/325/39f1361012121063164f(Xˉ)1/643/646/6410/6412/6412/6410/646/643/641/161Xf(Xˉ)3/6411/6426/6450/6468/6476/6470/6446/6425/649/646X2f(Xˉ)27/192121/192338/192750/1921156/1921444/1921470/1921058/192625/192243/192113/3
μ=43+5+7+9=6
σ2=41((3−6)2+(5−6)2+(7−6)2+(9−6)2)
=5
The mean of the sample means is
μXˉ=E(Xˉ)=6
Var(Xˉ)=σXˉ2=E(Xˉ2)−(E(Xˉ))2
=3113−(6)2=35
μXˉ=μ
σXˉ2=nσ2
Comments
Leave a comment