Answer to Question #305337 in Statistics and Probability for Yyy

Question #305337

A population consistent of value 3,5,7 and 9





1)List all the possible of size n=3 when drawing with replacement and compute the mean of each sample





2) construct a sampling distribution of the mean





3) compute for the mean and variance of the of the sample means

1
Expert's answer
2022-03-03T17:58:36-0500

We have population values "3,5,7,9" population size "N=4" and sample size "n=3."

Thus, the number of possible samples which can be drawn with replacement is "4^3=64."


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n Sample\\ values & Sample\\ mean(\\bar{X}) \\\\ \\hline\n 3,3,3 & 3\\\\\n \\hdashline\n 3,3,5 & 11\/3\\\\\n \\hdashline\n 3,3,7 & 13\/3\\\\\n \\hdashline\n 3,3,9 & 5\\\\\n \\hdashline\n 3,5,3 & 11\/3\\\\\n \\hdashline\n 3,5,5 & 13\/3\\\\\n \\hdashline\n 3,5,7 & 5\\\\\n \\hdashline\n 3,5,9 & 17\/3\\\\\n \\hdashline\n 3,7,3 & 13\/3\\\\\n \\hdashline\n 3,7,5 & 5\\\\\n \\hdashline\n 3,7,7 & 17\/3\\\\\n \\hdashline\n 3,7,9 & 19\/3\\\\\n \\hdashline\n 3,9,3 & 5\\\\\n \\hdashline\n 3,9,5 & 17\/3\\\\\n \\hdashline\n 3,9,7 & 19\/3\\\\\n \\hdashline\n 3,9,9 & 7\\\\\n \\hdashline\n 5,3,3 & 11\/3\\\\\n \\hdashline\n 5,3,5 & 13\/3\\\\\n \\hdashline\n 5,3,7 & 5\\\\\n \\hdashline\n 5,3,9 & 17\/3\\\\\n \\hdashline\n 5,5,3 & 13\/3\\\\\n \\hdashline\n 5,5,5 & 5\\\\\n \\hdashline\n 5,5,7 & 17\/3\\\\\n \\hdashline\n 5,5,9 & 19\/3\\\\\n \\hdashline\n 5,7,3 & 5\\\\\n \\hdashline\n 5,7,5 & 17\/3\\\\\n \\hdashline\n 5,7,7 & 19\/3\\\\\n \\hdashline\n 5,7,9 & 7\\\\\n \\hdashline\n 5,9,3 & 17\/3\\\\\n \\hdashline\n 5,9,5 & 19\/3\\\\\n \\hdashline\n 5,9,7 & 7\\\\\n \\hdashline\n 5,9,9 & 23\/3\\\\\n \\hdashline\n 7,3,3 & 13\/3\\\\\n \\hdashline\n 7,3,5 & 5\\\\\n \\hdashline\n 7,3,7 & 17\/3\\\\\n \\hdashline\n 7,3,9 & 19\/3\\\\\n \\hdashline\n 7,5,3 & 5\\\\\n \\hdashline\n 7,5,5 & 17\/3\\\\\n \\hdashline\n 7,5,7 & 19\/3\\\\\n \\hdashline\n 7,5,9 & 7\\\\\n \\hdashline\n 7,7,3 & 17\/3\\\\\n \\hdashline\n 7,7,5 & 19\/3\\\\\n \\hdashline\n 7,7,7 & 7\\\\\n \\hdashline\n 7,7,9 & 23\/3\\\\\n \\hdashline\n 7,9,3 & 19\/3\\\\\n \\hdashline\n 7,9,5 & 7\\\\\n \\hdashline\n 7,9,7 & 23\/3\\\\\n \\hdashline\n 7,9,9 & 25\/3\\\\\n \\hdashline\n 9,3,3 & 5\\\\\n \\hdashline\n 9,3,5 & 17\/3\\\\\n \\hdashline\n 9,3,7 & 19\/3\\\\\n \\hdashline\n 9,3,9 & 7\\\\\n \\hdashline\n 9,5,3 & 17\/3\\\\\n \\hdashline\n 9,5,5 & 19\/3\\\\\n \\hdashline\n 9,5,7 & 7\\\\\n \\hdashline\n 9,5,9 & 23\/3\\\\\n \\hdashline\n 9,7,3 & 19\/3\\\\\n \\hdashline\n 9,7,5 & 7\\\\\n \\hdashline\n 9,7,7 & 23\/3\\\\\n \\hdashline\n 9,7,9 & 25\/3\\\\\n \\hdashline\n 9,9,3 & 7\\\\\n \\hdashline\n 9,9,5 & 23\/3\\\\\n \\hdashline\n 9,9,7 & 25\/3\\\\\n \\hdashline\n 9,9,9 & 9\\\\\n \\hdashline\n\\end{array}"



2) The sampling distribution of the sample mean "\\bar{X}" is


"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:c:c}\n & \\bar{X} & f & f(\\bar{X}) & Xf(\\bar{X})& X^2f(\\bar{X}) \\\\ \\hline\n & 3 & 1 & 1\/64 & 3\/64 & 27\/192\\\\\n \\hdashline\n & 11\/3 & 3 & 3\/64 & 11\/64 & 121\/192 \\\\\n \\hdashline\n & 13\/3 & 6 & 6\/64 & 26\/64 & 338\/192\\\\\n \\hdashline\n & 5 & 10 & 10\/64 & 50\/64 & 750\/192 \\\\\n \\hdashline\n & 17\/3 & 12 & 12\/64 & 68\/64 & 1156\/192 \\\\\n \\hdashline\n & 19\/3 & 12 & 12\/64 & 76\/64 & 1444\/192 \\\\\n \\hdashline\n & 7 & 10 & 10\/64 & 70\/64 & 1470\/192 \\\\\n \\hdashline\n & 23\/3 & 6 & 6\/64 & 46\/64 & 1058\/192 \\\\\n \\hdashline\n & 25\/3 & 3 & 3\/64 & 25\/64 & 625\/192 \\\\\n \\hdashline\n & 9 & 1 & 1\/16 & 9\/64 & 243\/192 \\\\\n \\hdashline\n Sum= & & 64 & 1 & 6 & 113\/3\\\\\n \\hdashline\n\\end{array}"

"\\mu=\\dfrac{3+5+7+9}{4}=6"


"\\sigma^2=\\dfrac{1}{4}((3-6)^2+(5-6)^2+(7-6)^2+(9-6)^2)"

"=5"


The mean of the sample means is


"\\mu_{\\bar{X}}=E(\\bar{X})=6"




"Var(\\bar{X})=\\sigma^2_{\\bar{X}}=E(\\bar{X}^2)-(E(\\bar{X}))^2"


"=\\dfrac{113}{3}-(6)^2=\\dfrac{5}{3}"

"\\mu_{\\bar{X}}=\\mu"

"\\sigma_{\\bar{X}}^2=\\dfrac{\\sigma^2}{n}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS