Answer to Question #303832 in Statistics and Probability for James

Question #303832

As studied, the average number of hours spent by senior high school students for their online classes a week is 25 hours with a standard deviation of 4 hours. Assuming that the study is is true and the data is normally distributed.

1
Expert's answer
2022-02-28T18:07:19-0500

Let X=X= the number of hours spent by senior high school students for their online classes a week: XN(μ,σ2)X\sim N(\mu, \sigma^2)

Then Z=XμσN(0,1)Z=\dfrac{X-\mu}{\sigma}\sim N(0, 1)

Given μ=25 h,σ=4 h.\mu=25\ h, \sigma=4\ h.

a.


P(26<X<29)=P(X<29)P(X26)P(26<X<29)=P(X<29)-P(X\le26)




=P(Z<29254)P(Z26254)=P(Z<\dfrac{29-25}{4})-P(Z\leq\dfrac{26-25}{4})




=P(Z<1)P(Z0.25)=P(Z<1)-P(Z\leq0.25)




0.84134470.59870630.2426\approx0.8413447-0.5987063\approx0.2426



b.


P((X<21)(X>30))P((X<21)\cup(X>30))




=P(X<21)+1P(X30)=P(X<21)+1-P(X\leq30)




=1+P(Z<21254)P(Z30254)=1+P(Z<\dfrac{21-25}{4})-P(Z\leq\dfrac{30-25}{4})




=1+P(Z<1)P(Z1.25)=1+P(Z<-1)-P(Z\leq1.25)




1+0.1586550.8943500.2643\approx1+0.158655-0.894350\approx0.2643



с.


XˉN(μ,σ2/n)\bar{X}\sim N(\mu, \sigma^2/n)

Given n=12n=12


P(Xˉ>24)=1P(Xˉ24)P(\bar{X}>24)=1-P(\bar{X}\le 24)




=1P(Z24254/12)=1-P(Z\le\dfrac{24-25}{4/\sqrt{12}})




1P(Z0.866025)\approx1-P(Z\le-0.866025)




0.8068\approx0.8068




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment