Question #302991

Let X be the random variable such that : P(X = –2) = P(X = –1), P(X = 2) = P(X = 1) and P(X > 0) = P(X < 0) = P(X = 0). Obtain the probability mass function of X and its distribution functions


1
Expert's answer
2022-03-02T03:23:13-0500
P(X<0)=P(X=2)+P(X=1)P(X<0)=P(X = –2) +P(X = –1)

P(X>0)=P(X=2)+P(X=1)P(X>0)=P(X = 2) +P(X = 1)

P(X<0)+P(X=0)+P(X>0)=1P(X<0)+P(X = 0) +P(X>0)=1

Then


P(X<0)=P(X=0)=P(X>0)=1/3P(X<0)=P(X = 0) =P(X>0)=1/3

P(X=2)=P(X=1)=1/6P(X=-2)=P(X = -1)=1/6

P(X=2)=P(X=1)=1/6P(X=2)=P(X = 1)=1/6

Probability mass function


p(x)={1/6if x=21/6if x=11/3if x=01/6if x=11/6if x=2p(x) = \begin{cases} 1/6 &\text{if } x=-2 \\ 1/6 &\text{if } x=-1 \\ 1/3 &\text{if } x=0 \\ 1/6 &\text{if } x=1 \\ 1/6 &\text{if } x=2 \\ \end{cases}

The cumulative distribution function



F(x)={0x<21/62x<11/31x<02/30x<15/61x<21x2F(x) = \begin{cases} 0 & x<-2 \\ 1/6 & -2\le x<-1 \\ 1/3 &-1\le x<0 \\ 2/3 & 0\le x<1 \\ 5/6 & 1\le x<2 \\ 1 & x\ge2 \\ \end{cases}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS