Question #302944

A population consists of the values (1,3,5,7) consider a sample size of two that can be drawn from this population

1
Expert's answer
2022-02-28T16:10:07-0500

We have population values 1,3,5,71,3,5,7 population size N=4N=4 and sample size n=2.n=2.

Thus, the number of possible samples which can be drawn without replacement is (42)=6.\dbinom{4}{2}=6.


Sample valuesSample mean(Xˉ)1,321,531,743,543.755,76\def\arraystretch{1.5} \begin{array}{c:c} Sample\ values & Sample\ mean(\bar{X}) \\ \hline 1,3 & 2\\ \hdashline 1,5 & 3\\ \hdashline 1,7 & 4\\ \hdashline 3,5 & 4\\ \hdashline 3.7 & 5\\ \hdashline 5,7 & 6\\ \hdashline \end{array}



The sampling distribution of the sample mean Xˉ\bar{X} is


Xˉff(Xˉ)Xf(Xˉ)X2f(Xˉ)211/62/64/6311/63/69/6422/68/632/6511/65/625/6611/166/636/6Sum=61453/3\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c} & \bar{X} & f & f(\bar{X}) & Xf(\bar{X})& X^2f(\bar{X}) \\ \hline & 2 & 1 & 1/6 & 2/6 & 4/6\\ \hdashline & 3 & 1 & 1/6 & 3/6 & 9/6 \\ \hdashline & 4 & 2 & 2/6 & 8/6 & 32/6\\ \hdashline & 5 & 1 & 1/6 & 5/6 & 25/6 \\ \hdashline & 6 & 1 & 1/16 & 6/6 & 36/6 \\ \hdashline Sum= & & 6 & 1 & 4 & 53/3\\ \hdashline \end{array}


μ=1+3+5+74=4\mu=\dfrac{1+3+5+7}{4}=4

σ2=14((14)2+(34)2+(54)2+(74)2)\sigma^2=\dfrac{1}{4}((1-4)^2+(3-4)^2+(5-4)^2+(7-4)^2)

=5=5


Check

The mean of the sample means is


μXˉ=E(Xˉ)=4=μ\mu_{\bar{X}}=E(\bar{X})=4=\mu




Var(Xˉ)=σXˉ2=E(Xˉ2)(E(Xˉ))2Var(\bar{X})=\sigma^2_{\bar{X}}=E(\bar{X}^2)-(E(\bar{X}))^2

=533(4)2=53=\dfrac{53}{3}-(4)^2=\dfrac{5}{3}

The standard deviation of the sample means is


σXˉ=σXˉ2=5/3\sigma_{\bar{X}}=\sqrt{\sigma^2_{\bar{X}}}=\sqrt{5/3}

σ2nNnN1=534241=σXˉ2\dfrac{\sigma^2}{n}\cdot\dfrac{N-n}{N-1}=\dfrac{5}{3}\cdot \dfrac{4-2}{4-1}=\sigma^2_{\bar{X}}

μXˉ=μ\mu_{\bar{X}}=\mu

σXˉ=σnNnN1\sigma_{\bar{X}}=\dfrac{\sigma}{\sqrt{n}}\sqrt{\dfrac{N-n}{N-1}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS