Comsider the example of the number of languages spoken by Filipino school children. Define x to be the number of languages in which a randomly chosen Filipino child attending school can hold an everyday conversation. Assume the probability function of X, P(x), is as shown in the following table.
X - 1 2 3 4 5 6
P(x) - 0.663, 0.226, 0.066, 0.019, 0.004
a. What is the mean of X?
b. Find the variance of X.
c.Find the standard deviation of X.
X - 1 2 3 4 5 6
P(x) - 0.663, 0.226, 0.066, 0.019, 0.004, 0.022
(a)
"Mean=E(X)=\\Sigma x.P(x)\n\\\\=1\\times 0.663+ 2\\times0.226+ 3\\times0.066+4\\times 0.019+ 5\\times0.004+6\\times0.022\n\\\\=1.541"
(b)
"E(X^2)=x^2.P(x)\n\\\\=1^2\\times 0.663+ 2^2\\times0.226+ 3^2\\times0.066+4^2\\times 0.019+ 5^2\\times0.004+6^2\\times0.022\n\\\\=3.357\n\\\\Variance=\\sigma^2=E(X^2)-[E(X)]^2\n\\\\=3.357-1.541^2\n\\\\=0.982319"
(c)
Standard deviation"=\\sigma=\\sqrt{0.982319}=0.99112007345"
Comments
Leave a comment