n 1 = 6 n 2 = 7 n_1=6\\ n_2=7 n 1 = 6 n 2 = 7
The sample means for the two machines are given as,
x 1 ˉ = ∑ x n 1 = 42 6 = 7 x 2 ˉ = ∑ x n 2 = 73 7 = 10.4286 \bar{x_1}={\sum x\over n_1}={42\over6}=7\\\bar{x_2}={\sum x\over n_2}={73\over 7}=10.4286 x 1 ˉ = n 1 ∑ x = 6 42 = 7 x 2 ˉ = n 2 ∑ x = 7 73 = 10.4286
The sample variances for both machines are derived using the following formula,
∑ ( x i 2 ) − ( ∑ x i ) 2 n i n i − 1 {\sum(x_i^2)-{(\sum x_i)^2\over n_i}}\over n_i-1 n i − 1 ∑ ( x i 2 ) − n i ( ∑ x i ) 2
Therefore,
s 1 2 = 304 − 294 5 = 2 s 2 2 = 787 − 761.29 6 = 4.2857 s^2_1={304-294\over 5}=2\\s^2_2={787-761.29\over 6}=4.2857 s 1 2 = 5 304 − 294 = 2 s 2 2 = 6 787 − 761.29 = 4.2857
The hypotheses tested are,
H 0 : μ 1 = μ 2 v s H 1 : μ 1 < μ 2 H_0:\mu_1=\mu_2\\vs\\H_1:\mu_1\lt\mu_2 H 0 : μ 1 = μ 2 v s H 1 : μ 1 < μ 2
To perform this test, we shall apply the student's t distribution since the population variance is unknown. We shall proceed as follows,
The test statistic is given as,
t c = ( x ˉ 1 − x ˉ 2 ) s 1 2 n 1 + s 2 2 n 2 = ( 7 − 10.4286 ) 2 6 + 4.2857 7 = − 3.4285714 0.94557823 = − 3.5259 t_c={(\bar x_1-\bar x_2)\over \sqrt{{s_1^2\over n_1}+{s_2^2\over n_2}}}={(7-10.4286)\over\sqrt{{2\over6}+{4.2857\over 7}}}={-3.4285714\over\sqrt{ 0.94557823}}=-3.5259 t c = n 1 s 1 2 + n 2 s 2 2 ( x ˉ 1 − x ˉ 2 ) = 6 2 + 7 4.2857 ( 7 − 10.4286 ) = 0.94557823 − 3.4285714 = − 3.5259
t c t_c t c is compared with the table value at α = 0.05 \alpha =0.05 α = 0.05 with v v v degrees of freedom. The number of degrees of freedom, v v v is given as,
v = ( s 1 2 n 1 + s 2 2 n 2 ) 2 ( s 1 2 n 1 ) 2 n 1 − 1 + ( s 2 2 n 2 ) 2 n 2 − 1 v={({s_1^2\over n_1}+{s_2^2\over n_2})^2\over {({s_1^2\over n_1})^2\over n_1-1}+{({s_2^2\over n_2})^2\over n_2-1}} v = n 1 − 1 ( n 1 s 1 2 ) 2 + n 2 − 1 ( n 2 s 2 2 ) 2 ( n 1 s 1 2 + n 2 s 2 2 ) 2
v = 0.9455782 3 2 0.02222222 + 0.06247397 = 10.55 ≈ 11 v={0.94557823^2\over 0.02222222+0.06247397}=10.55\approx 11 v = 0.02222222 + 0.06247397 0.9455782 3 2 = 10.55 ≈ 11
The table value is given by, t α , v = t 0.05 , 11 = − 1.796 t_{\alpha, v}=t_{0.05, 11}=-1.796 t α , v = t 0.05 , 11 = − 1.796 .
We reject the null hypothesis if, t c < t 0.05 , 11 t_c\lt t_{0.05,11} t c < t 0.05 , 11 .
Since t c = − 3.5259 < t 0.05 , 11 = − 1.796 , t_c=-3.5259\lt t_{0.05,11}=-1.796, t c = − 3.5259 < t 0.05 , 11 = − 1.796 , we reject the null hypothesis and conclude that there is sufficient evidence to show that the mean weight of bottles filled by machine 2 is greater than the mean weight of bottles filled by machine 1 at 5% level of significance.
Comments