given that \( x \) is a random variable from a binomial distribution with parameter \( (n, p) \), Using the m.g.f technique show that the expected value and variance of \( x \) is \( n p \) and \( n p q \) respectively
For Binomial distribution
"f(x)=\\binom{n}{x}p^xq^{n-x}\\\\\nM(t)=E(e^{tx})=e^{tx}\\sum_{x=0}^n\\binom{n}{x}p^xq^{n-x}\\\\\n=\\sum_{x=0}^n\\binom{n}{x}(pe^t)^xq^{n-x}\\\\\n=(pe^t+q)^n\\\\\nM'(t)=npe^t(pe^t+q)^{n-1}\\\\\nM'(0)=E(x)=np(p+q)^{n-1}=np\\\\\nM''(t)=npe^t(pe^t+q)^{n-2}(n-1)pe^t+npe^t(pe^t+q)^{n-1}\n\\\\\nM''(0)=np(p+q)^{n-2}(n-1)p+np(p+q)^{n-1}\\\\\nM''(0)=np(n-1)p+np=n(n-1)p^2+np\\\\\nvar(x)=M''(0)-(M''(0))^2\\\\\n=n(n-1)p^2+np-(np)^2\\\\\n=np-np^2=np(n-p)=npq"
Comments
Leave a comment