Members 1 2 3 4 5 Marital status M S M S S \def\arraystretch{1.5}
\begin{array}{c:c}
\text{Members} & 1 & 2 & 3 & 4 & 5 \\ \hline
\text{Marital status} & M & S & M & S & S \\
\hdashline
\end{array} Members Marital status 1 M 2 S 3 M 4 S 5 S Find the proportion P P P of married members in population.
P = 2 5 P=\dfrac{2}{5} P = 5 2 Select all possible sample of 2 members from the population without replacement.
Members 1 2 Marital status M S , P 12 = 1 2 \def\arraystretch{1.5}
\begin{array}{c:c}
\text{Members} & 1 & 2 \\ \hline
\text{Marital status} & M & S \\
\hdashline
\end{array}, P_{12}=\dfrac{1}{2} Members Marital status 1 M 2 S , P 12 = 2 1
Members 1 3 Marital status M M , P 13 = 1 \def\arraystretch{1.5}
\begin{array}{c:c}
\text{Members} & 1 & 3 \\ \hline
\text{Marital status} & M & M \\
\hdashline
\end{array}, P_{13}=1 Members Marital status 1 M 3 M , P 13 = 1
Members 1 4 Marital status M S , P 14 = 1 2 \def\arraystretch{1.5}
\begin{array}{c:c}
\text{Members} & 1 & 4 \\ \hline
\text{Marital status} & M & S \\
\hdashline
\end{array}, P_{14}=\dfrac{1}{2} Members Marital status 1 M 4 S , P 14 = 2 1
Members 1 5 Marital status M S , P 15 = 1 2 \def\arraystretch{1.5}
\begin{array}{c:c}
\text{Members} & 1 & 5 \\ \hline
\text{Marital status} & M & S \\
\hdashline
\end{array}, P_{15}=\dfrac{1}{2} Members Marital status 1 M 5 S , P 15 = 2 1
Members 2 3 Marital status S M , P 23 = 1 2 \def\arraystretch{1.5}
\begin{array}{c:c}
\text{Members} & 2 & 3 \\ \hline
\text{Marital status} & S & M \\
\hdashline
\end{array}, P_{23}=\dfrac{1}{2} Members Marital status 2 S 3 M , P 23 = 2 1
Members 2 4 Marital status S S , P 24 = 0 \def\arraystretch{1.5}
\begin{array}{c:c}
\text{Members} & 2 & 4 \\ \hline
\text{Marital status} & S & S \\
\hdashline
\end{array}, P_{24}=0 Members Marital status 2 S 4 S , P 24 = 0
Members 2 5 Marital status S S , P 25 = 0 \def\arraystretch{1.5}
\begin{array}{c:c}
\text{Members} & 2 & 5 \\ \hline
\text{Marital status} & S & S \\
\hdashline
\end{array}, P_{25}=0 Members Marital status 2 S 5 S , P 25 = 0
Members 3 4 Marital status M S , P 34 = 1 2 \def\arraystretch{1.5}
\begin{array}{c:c}
\text{Members} & 3 & 4 \\ \hline
\text{Marital status} & M & S \\
\hdashline
\end{array}, P_{34}=\dfrac{1}{2} Members Marital status 3 M 4 S , P 34 = 2 1
Members 3 5 Marital status M S , P 35 = 1 2 \def\arraystretch{1.5}
\begin{array}{c:c}
\text{Members} & 3 & 5 \\ \hline
\text{Marital status} & M & S \\
\hdashline
\end{array}, P_{35}=\dfrac{1}{2} Members Marital status 3 M 5 S , P 35 = 2 1
Members 4 5 Marital status S S , P 45 = 0 \def\arraystretch{1.5}
\begin{array}{c:c}
\text{Members} & 4 & 5 \\ \hline
\text{Marital status} & S & S \\
\hdashline
\end{array}, P_{45}=0 Members Marital status 4 S 5 S , P 45 = 0
Compute the mean μ P \mu_P μ P of a sample proportion
μ P = 1 10 ( 1 2 + 1 + 1 2 + 1 2 + 1 2 + 0 + 0 \mu_P=\dfrac{1}{10}(\dfrac{1}{2}+1+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+0+0 μ P = 10 1 ( 2 1 + 1 + 2 1 + 2 1 + 2 1 + 0 + 0
+ 1 2 + 1 2 + 0 ) = 2 5 +\dfrac{1}{2}+\dfrac{1}{2}+0)=\dfrac{2}{5} + 2 1 + 2 1 + 0 ) = 5 2 Check
μ P = 2 5 = P \mu_P=\dfrac{2}{5}=P μ P = 5 2 = P Compute the standard deviation σ P \sigma_P σ P of a sample proportion
σ P 2 = 1 10 ( ( 1 2 − 2 5 ) 2 + ( 1 − 2 5 ) 2 \sigma^2_P=\dfrac{1}{10}((\dfrac{1}{2}-\dfrac{2}{5})^2+(1-\dfrac{2}{5})^2 σ P 2 = 10 1 (( 2 1 − 5 2 ) 2 + ( 1 − 5 2 ) 2
+ ( 1 2 − 2 5 ) 2 + ( 1 2 − 2 5 ) 2 + ( 1 2 − 2 5 ) 2 +(\dfrac{1}{2}-\dfrac{2}{5})^2+(\dfrac{1}{2}-\dfrac{2}{5})^2+(\dfrac{1}{2}-\dfrac{2}{5})^2 + ( 2 1 − 5 2 ) 2 + ( 2 1 − 5 2 ) 2 + ( 2 1 − 5 2 ) 2
+ ( 0 − 2 5 ) 2 + ( 0 − 2 5 ) 2 + ( 1 2 − 2 5 ) 2 +(0-\dfrac{2}{5})^2+(0-\dfrac{2}{5})^2+(\dfrac{1}{2}-\dfrac{2}{5})^2 + ( 0 − 5 2 ) 2 + ( 0 − 5 2 ) 2 + ( 2 1 − 5 2 ) 2
+ ( 1 2 − 2 5 ) 2 + ( 0 − 2 5 ) 2 ) = 9 100 +(\dfrac{1}{2}-\dfrac{2}{5})^2+(0-\dfrac{2}{5})^2)=\dfrac{9}{100} + ( 2 1 − 5 2 ) 2 + ( 0 − 5 2 ) 2 ) = 100 9
σ P = σ 2 = 9 100 = 3 10 \sigma_P=\sqrt{\sigma^2}=\sqrt{\dfrac{9}{100}}=\dfrac{3}{10} σ P = σ 2 = 100 9 = 10 3 Check
P ( 1 − P ) n ⋅ N − n N − 1 = 2 5 ( 1 − 2 5 ) 2 ⋅ 5 − 2 5 − 1 \sqrt{\dfrac{P(1-P)}{n}\cdot\dfrac{N-n}{N-1}}=\sqrt{\dfrac{\dfrac{2}{5}(1-\dfrac{2}{5})}{2}\cdot\dfrac{5-2}{5-1}} n P ( 1 − P ) ⋅ N − 1 N − n = 2 5 2 ( 1 − 5 2 ) ⋅ 5 − 1 5 − 2
= 3 10 = σ P =\dfrac{3}{10}=\sigma_P = 10 3 = σ P
σ P = 3 10 = P ( 1 − P ) n ⋅ N − n N − 1 \sigma_P=\dfrac{3}{10}=\sqrt{\dfrac{P(1-P)}{n}\cdot\dfrac{N-n}{N-1}} σ P = 10 3 = n P ( 1 − P ) ⋅ N − 1 N − n
Comments