Question #287339

A population consists of five members. The marital status of each member is given below, where M and S stand for married and single respectively.

 

Member

1

2

3

4

5

Marital Status

M

S

M

S

S


1
Expert's answer
2022-01-14T10:42:07-0500
Members12345Marital statusMSMSS\def\arraystretch{1.5} \begin{array}{c:c} \text{Members} & 1 & 2 & 3 & 4 & 5 \\ \hline \text{Marital status} & M & S & M & S & S \\ \hdashline \end{array}

Find the proportion PP of married members in population.


P=25P=\dfrac{2}{5}

Select all possible sample of 2 members from the population without replacement.


Members12Marital statusMS,P12=12\def\arraystretch{1.5} \begin{array}{c:c} \text{Members} & 1 & 2 \\ \hline \text{Marital status} & M & S \\ \hdashline \end{array}, P_{12}=\dfrac{1}{2}

Members13Marital statusMM,P13=1\def\arraystretch{1.5} \begin{array}{c:c} \text{Members} & 1 & 3 \\ \hline \text{Marital status} & M & M \\ \hdashline \end{array}, P_{13}=1

Members14Marital statusMS,P14=12\def\arraystretch{1.5} \begin{array}{c:c} \text{Members} & 1 & 4 \\ \hline \text{Marital status} & M & S \\ \hdashline \end{array}, P_{14}=\dfrac{1}{2}

Members15Marital statusMS,P15=12\def\arraystretch{1.5} \begin{array}{c:c} \text{Members} & 1 & 5 \\ \hline \text{Marital status} & M & S \\ \hdashline \end{array}, P_{15}=\dfrac{1}{2}

Members23Marital statusSM,P23=12\def\arraystretch{1.5} \begin{array}{c:c} \text{Members} & 2 & 3 \\ \hline \text{Marital status} & S & M \\ \hdashline \end{array}, P_{23}=\dfrac{1}{2}

Members24Marital statusSS,P24=0\def\arraystretch{1.5} \begin{array}{c:c} \text{Members} & 2 & 4 \\ \hline \text{Marital status} & S & S \\ \hdashline \end{array}, P_{24}=0

Members25Marital statusSS,P25=0\def\arraystretch{1.5} \begin{array}{c:c} \text{Members} & 2 & 5 \\ \hline \text{Marital status} & S & S \\ \hdashline \end{array}, P_{25}=0

Members34Marital statusMS,P34=12\def\arraystretch{1.5} \begin{array}{c:c} \text{Members} & 3 & 4 \\ \hline \text{Marital status} & M & S \\ \hdashline \end{array}, P_{34}=\dfrac{1}{2}

Members35Marital statusMS,P35=12\def\arraystretch{1.5} \begin{array}{c:c} \text{Members} & 3 & 5 \\ \hline \text{Marital status} & M & S \\ \hdashline \end{array}, P_{35}=\dfrac{1}{2}

Members45Marital statusSS,P45=0\def\arraystretch{1.5} \begin{array}{c:c} \text{Members} & 4 & 5 \\ \hline \text{Marital status} & S & S \\ \hdashline \end{array}, P_{45}=0

Compute the mean μP\mu_P of a sample proportion


μP=110(12+1+12+12+12+0+0\mu_P=\dfrac{1}{10}(\dfrac{1}{2}+1+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+0+0

+12+12+0)=25+\dfrac{1}{2}+\dfrac{1}{2}+0)=\dfrac{2}{5}

Check

μP=25=P\mu_P=\dfrac{2}{5}=P

Compute the standard deviation σP\sigma_P of a sample proportion

σP2=110((1225)2+(125)2\sigma^2_P=\dfrac{1}{10}((\dfrac{1}{2}-\dfrac{2}{5})^2+(1-\dfrac{2}{5})^2

+(1225)2+(1225)2+(1225)2+(\dfrac{1}{2}-\dfrac{2}{5})^2+(\dfrac{1}{2}-\dfrac{2}{5})^2+(\dfrac{1}{2}-\dfrac{2}{5})^2

+(025)2+(025)2+(1225)2+(0-\dfrac{2}{5})^2+(0-\dfrac{2}{5})^2+(\dfrac{1}{2}-\dfrac{2}{5})^2

+(1225)2+(025)2)=9100+(\dfrac{1}{2}-\dfrac{2}{5})^2+(0-\dfrac{2}{5})^2)=\dfrac{9}{100}

σP=σ2=9100=310\sigma_P=\sqrt{\sigma^2}=\sqrt{\dfrac{9}{100}}=\dfrac{3}{10}

Check


P(1P)nNnN1=25(125)25251\sqrt{\dfrac{P(1-P)}{n}\cdot\dfrac{N-n}{N-1}}=\sqrt{\dfrac{\dfrac{2}{5}(1-\dfrac{2}{5})}{2}\cdot\dfrac{5-2}{5-1}}

=310=σP=\dfrac{3}{10}=\sigma_P

σP=310=P(1P)nNnN1\sigma_P=\dfrac{3}{10}=\sqrt{\dfrac{P(1-P)}{n}\cdot\dfrac{N-n}{N-1}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS