A population consists of five members. The marital status of each member is given below, where M and S stand for married and single respectively.
Member
1
2
3
4
5
Marital Status
M
S
M
S
S
Find the proportion "P" of married members in population.
Select all possible sample of 2 members from the population without replacement.
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n \\text{Members} & 1 & 3 \\\\ \\hline\n \\text{Marital status} & M & M \\\\\n \\hdashline\n\\end{array}, P_{13}=1"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n \\text{Members} & 1 & 4 \\\\ \\hline\n \\text{Marital status} & M & S \\\\\n \\hdashline\n\\end{array}, P_{14}=\\dfrac{1}{2}"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n \\text{Members} & 1 & 5 \\\\ \\hline\n \\text{Marital status} & M & S \\\\\n \\hdashline\n\\end{array}, P_{15}=\\dfrac{1}{2}"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n \\text{Members} & 2 & 3 \\\\ \\hline\n \\text{Marital status} & S & M \\\\\n \\hdashline\n\\end{array}, P_{23}=\\dfrac{1}{2}"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n \\text{Members} & 2 & 4 \\\\ \\hline\n \\text{Marital status} & S & S \\\\\n \\hdashline\n\\end{array}, P_{24}=0"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n \\text{Members} & 2 & 5 \\\\ \\hline\n \\text{Marital status} & S & S \\\\\n \\hdashline\n\\end{array}, P_{25}=0"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n \\text{Members} & 3 & 4 \\\\ \\hline\n \\text{Marital status} & M & S \\\\\n \\hdashline\n\\end{array}, P_{34}=\\dfrac{1}{2}"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n \\text{Members} & 3 & 5 \\\\ \\hline\n \\text{Marital status} & M & S \\\\\n \\hdashline\n\\end{array}, P_{35}=\\dfrac{1}{2}"
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c}\n \\text{Members} & 4 & 5 \\\\ \\hline\n \\text{Marital status} & S & S \\\\\n \\hdashline\n\\end{array}, P_{45}=0"
Compute the mean "\\mu_P" of a sample proportion
"+\\dfrac{1}{2}+\\dfrac{1}{2}+0)=\\dfrac{2}{5}"
Check
"\\mu_P=\\dfrac{2}{5}=P"Compute the standard deviation "\\sigma_P" of a sample proportion
"\\sigma^2_P=\\dfrac{1}{10}((\\dfrac{1}{2}-\\dfrac{2}{5})^2+(1-\\dfrac{2}{5})^2""+(\\dfrac{1}{2}-\\dfrac{2}{5})^2+(\\dfrac{1}{2}-\\dfrac{2}{5})^2+(\\dfrac{1}{2}-\\dfrac{2}{5})^2"
"+(0-\\dfrac{2}{5})^2+(0-\\dfrac{2}{5})^2+(\\dfrac{1}{2}-\\dfrac{2}{5})^2"
"+(\\dfrac{1}{2}-\\dfrac{2}{5})^2+(0-\\dfrac{2}{5})^2)=\\dfrac{9}{100}"
"\\sigma_P=\\sqrt{\\sigma^2}=\\sqrt{\\dfrac{9}{100}}=\\dfrac{3}{10}"
Check
"=\\dfrac{3}{10}=\\sigma_P"
"\\sigma_P=\\dfrac{3}{10}=\\sqrt{\\dfrac{P(1-P)}{n}\\cdot\\dfrac{N-n}{N-1}}"
Comments
Leave a comment