For the a Poisson random variable x generating function G(t)= exp^lambda(t-1) show that the expected value E(x) and variance (x) are given by lambda and lambda respectively.
"G(t)=e^{\\lambda(e^t-1)}"
"E(x)=G'(0)"
"G'(t)=\\lambda e^te^{\\lambda(e^t-1)}=\\lambda e^{\\lambda t(e^t-1)}"
"G'(0)==\\lambda e^{\\lambda 0(e^t-1)}=\\lambda"
"var(x)=E(x^2)-[E(x)]^2"
"E(X^2)=G''(0)"
"G''(t)=\\lambda e^{\\lambda e^t+t-\\lambda}(\\lambda e^t+1)"
"G''(0)=\\lambda e^{\\lambda e^0+0-\\lambda}(\\lambda e^0+1)=\\lambda(\\lambda+1)=\\lambda^2+\\lambda"
From the first part, "E(x)=\\lambda" . Thus;
"var(x)=E(x^2)-[E(x)]^2=\\lambda^2+\\lambda-\\lambda^2=\\lambda"
Comments
Leave a comment