Question #287194

X and Y are dependent random variable with E(X)=1, E(Y)=6, Var(X)=2, and Var(Y)=2 find the following:

a. E(X-6)

b. E(XY)

c. E(X+Y)


1
Expert's answer
2022-01-17T12:00:04-0500

Given that E(X)=1,E(Y)=6,Var(X)=2,and Var(Y)=2E(X)=1, E(Y)=6, Var(X)=2, and\space Var(Y)=2 then, 

a)a)

E(X6)=E(X)E(6)=16=5,E(X-6)=E(X)-E(6)=1-6=-5, since the expectation of a constant is the same constant.

b)b)

To find E(XY)E(XY) , we shall derive it from the covariance of the random variables XX and YY

Now,

Cov(x,y)=E(xy)(E(x)×E(y))Cov(x,y)=E(xy)-(E(x)\times E(y))

We make E(xy)E(xy) subject of the formula.

So,

E(xy)=Cov(x,y)+(E(x)×E(y))E(xy)=Cov(x,y)+(E(x)\times E(y))

Given that E(X)=1 and E(Y)=6E(X)=1\space and \space E(Y)=6 then,

E(xy)=Cov(x,y)+(1×6)E(xy)=Cov(x,y)+6..........(1)E(xy)=Cov(x,y)+(1\times 6)\\ E(xy)=Cov(x,y)+6..........(1)

Given the value of Cov(x,y)Cov(x,y), we can find the value of E(xy)E(xy) using equation (1) above.


c)c)

E(X+Y)=E(X)+E(Y)=1+6=7,E(X+Y)=E(X)+E(Y)=1+6=7, this is because, expectation of the sum of the two variables is equal to the sum of the mathematical expectation of XX and the mathematical expectation of YY.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS