Let ππ (π‘) = ππ π‘ 1β0.8π π‘ with Β΅=5 and define π = 2π +3 , find Var(Z).
"M_X(t)=ke^{t\\left(1-0.8e^t\\right)}, \\mu=5,Z=2X+3"
"\\Rightarrow M'_X(t)=ke^{t\\left(1-0.8e^t\\right)}\\left(1-0.8e^t-0.8e^tt\\right)\n\\\\E(X)=\\mu=5\\ (given)\n\\\\E(X)=M'_X(0)"
So, "k(1)\\left(1-0.8(1)-0.8(1)(0)\\right)=5"
"\\Rightarrow k(0.2)=5\n\\\\ \\Rightarrow k=25"
So, we have, "M_X(t)=25e^{t\\left(1-0.8e^t\\right)}"
Now, "M''_X(t)=25[0.64e^{3t-0.8e^tt}t^2-2.4e^{2t-0.8e^tt}t+1.28e^{3t-0.8e^tt}t-3.2e^{2t-0.8e^tt}+0.64e^{3t-0.8e^tt}+e^{t\\left(-0.8e^t+1\\right)}]"
"M''_X(0)=E(X^2)"
So, "M''_X(0)=25[0.64(0)-2.4(0)+1.28(0)+3.2(1)+0.64(1)+1]"
"=25[3.2+1.64]=121"
"Var(Z)=Var(2X+3)=4Var(X)+0=4Var(X)"
Also, "Var(X)=E(X^2)-[E(X)]^2=121-5^2=96"
Then, "Var(Z)=4(96)=384"
Comments
Leave a comment