The line of regression of Y on X is expressed as:
Y = a + b X Y=a+bX Y = a + b X
Where;
b = n Σ X Y − ( Σ X ) ( Σ Y ) n Σ X 2 − ( Σ X ) 2 b=\frac{n\Sigma XY-(\Sigma X)(\Sigma Y)}{n \Sigma X^2-(\Sigma X)^2} b = n Σ X 2 − ( Σ X ) 2 n Σ X Y − ( Σ X ) ( Σ Y )
b = ( 10 × 3467 ) − ( 130 ) ( 220 ) 10 ( 2288 ) 2 − ( 130 ) 2 b=\frac{(10\times3467)-(130)(220)}{10 (2288)^2-(130)^2} b = 10 ( 2288 ) 2 − ( 130 ) 2 ( 10 × 3467 ) − ( 130 ) ( 220 )
b = 1.02 b=1.02 b = 1.02
a = Σ Y − b Σ X n a=\frac{\Sigma Y-b\Sigma X}{n} a = n Σ Y − b Σ X
a = 220 − 1.02 × 130 10 a=\frac{220-1.02\times130}{10} a = 10 220 − 1.02 × 130
a = 8.74 a=8.74 a = 8.74
Y = 8.74 + 1.02 X Y=8.74+1.02X Y = 8.74 + 1.02 X
If the price (X) is 16 units then supply (Y) is:
Y = 8.74 + 1.02 × 16 Y=8.74+1.02\times16 Y = 8.74 + 1.02 × 16
Y = 25.06 Y=25.06 Y = 25.06
The standard error of the estimate is:
s = Σ Y 2 − a Σ Y − b Σ X Y n − 2 s=\sqrt{\frac{\Sigma Y^2-a\Sigma Y-b\Sigma XY}{n-2}} s = n − 2 Σ Y 2 − a Σ Y − b Σ X Y
s = 5506 − ( 8.74 × 220 ) − ( 1.02 × 3467 ) 10 − 2 s=\sqrt{\frac{5506-(8.74\times220)-(1.02\times3467)}{10-2}} s = 10 − 2 5506 − ( 8.74 × 220 ) − ( 1.02 × 3467 )
s = 2.42 s=2.42 s = 2.42
Comments