Suppose a random variable is normally distributed. The probabilities for a85 and 142 are 10% and 65%, respectively. Find the mean and standard deviation to the nearest whole number.
Mean (Expected Value):
"Mean (\u03bc) = \u03a3xp"
"Mean (\u03bc) = (85\\times0.10)+(142\\times0.65)"
"Mean (\u03bc) =8.50+92.30=100.80\\approx101"
Standard Deviation (σ):
"\\sigma=\\sqrt{\u03a3(x-\\mu)^{2} \\rho}"
"\\sigma=\\sqrt{(85-101)^{2}\\times0.1+(142-101)^2\\times0.65}"
"\\sigma=\\sqrt{(256\\times0.1)+(1681\\times0.65)}"
"\\sigma=\\sqrt{25.6+168.1}"
"\\sigma=\\sqrt{193.7}"
"\\sigma=13.9\\approx14"
Comments
Leave a comment