Scores of an achievement test show that if follows a normal distribution. Its mean is 78 with a standard deviation of 8. Find the interval wherein the middle 80% of the scores lie?
"P(X<x_1)=P(Z<\\dfrac{x_1-\\mu}{\\sigma})"
"=P(Z<\\dfrac{x_1-78}{8})=0.1"
"\\dfrac{x_1-78}{8}\\approx-1.281552"
"x_1=78-8(1.281552)"
"x_1\\approx67.7476"
"P(X>x_2)=1-P(Z<\\dfrac{x_2-\\mu}{\\sigma})"
"=1-P(Z<\\dfrac{x_2-78}{8})=0.1"
"P(Z<\\dfrac{x_2-78}{8})=0.9"
"\\dfrac{x_2-78}{8}\\approx1.281552"
"x_2=78+8(1.281552)"
"x_2\\approx88.2524"
Interval "(67.7476, 88.2524)."
Comments
Leave a comment