Question #260969

(1) If the total cost of a firm is c(x) = 1.5x^3 - 5x^2 + 20x + 5 . Find the marginal cost (in dollars) when 25 units are produced and sold. (2) The number q of roller blades a firm is willing to sell per week at a price of $p is given by q = 60 square root of p + 25 + 30 for 20 < p < 100 . (i) Find dq/dp . (ii) Find the amount supplied when the price is $56. (ii) Find the instantaneous rate of change of supply with respect to price when the price is $56. 


1
Expert's answer
2021-11-11T18:48:06-0500

(1) Given cost of firm is C(x)=1.5x35x2+20x+5C(x)=1.5 x^{3}-5 x^{2}+20 x+5

 

 Marginal cost =M.C=dCdxM.C.=ddx(1.5x35x2+20x+5)=3×1.5x210x+20=4.5x210x+20 Now M.C. x=25=4.5(25)210×25+20=4.5×625250+20=2812.5250+20= 2582.5\begin{aligned} \text { Marginal cost }=M . C &=\frac{d C}{d x} \\ \Rightarrow M . C . &=\frac{d}{d x}\left(1.5 x^{3}-5 x^{2}+20 x+5\right) \\ &=3 \times 1.5 x^{2}-10 x+20 \\ &=4.5 x^{2}-10 x+20 \\ \text { Now M.C. } \mid x=25 &=4.5(25)^{2}-10 \times 25+20 \\ &=4.5 \times 625-250+20 \\ &=2812.5-250+20 \\ &=\ 2582.5 \end{aligned}

(2) Given supply - price function

 

q=60p+25+300 for 20p100i)dqdp=6012(p+25)121=30p+25q=60 \sqrt{p+25}+300 \quad \text { for } \quad 20 \leqslant p \leqslant 100\\ i) \frac{d q}{d p}=60 \cdot \frac{1}{2}(p+25)^{\frac{1}{2}-1}\\ =\frac{30}{\sqrt{p+25}}\\

 

ii) Amount of Supply when price is $ 56

 

q=6056+25+300=6081+300=60×9+300=540+300=840\begin{aligned} q &=60 \sqrt{56+25}+300 \\ &=60 \sqrt{81}+300 \\ &=60 \times 9+300 \\ &=540+300 \\ &=840 \end{aligned}

 

iii) Instantaneous rate of change of supply with respect to price when price is $ 56

 

=dqdpp=56=3056+25=309=103=3.33=\left.\frac{d q}{d p}\right|_{p=56}=\frac{30}{\sqrt{56+25}}=\frac{30}{9}=\frac{10}{3}=3.33


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS