Question #252321

Suppose the joint p.d.f of the continuous random variable X and Y is given by

f(x,y)=λ2e(-λ(x+y)) zero otherwise x>0 y>0

i) Obtain the joint p.d.f of the new random variables V=X+Y and U=X/(X+Y)

ii)Find the marginal probability distribution functions of U and V

iii) Determine whether or not U and V are independent



1
Expert's answer
2021-11-01T07:19:46-0400

f(x,y)=λ2eλ(x+y), x,y>0f(x,y)=\lambda^2e^{-\lambda(x+y)}, \space x,y\gt0

The new random variables are defined by,

V=X+YV=X+Y and U=X/(X+Y)U=X/(X+Y)

i)i)

To find the joint probability distribution functions for these random variables, we shall apply the transformation of continuous random variable using JacobianJacobian transformation as described below.

Let us first make the random variables XX and YY subject of the formula then,

X=UVX=UV and Y=V(1U)Y=V(1-U). We define Jacobian(J)Jacobian(J) as a 2×22\times2 matrix given as,

We now apply the Jacobian transformation as follows,

J=dx/dudx/dvdy/dudy/dv=VUV1U=(V(1U))+UV=VJ=\begin{vmatrix} dx/du & dx/dv \\ dy/du & dy/dv \end{vmatrix}=\begin{vmatrix} V & U \\ -V & 1-U \end{vmatrix}=(V*(1-U))+UV=V


The joint probability distribution function of UU and VV is given as,

g(u,v)=λ2eλ(uv+vuv)J=λ2eλ(v)vg(u,v)=\lambda^2e^{-\lambda(uv+v-uv)}*|J|=\lambda^2e^{-\lambda(v)}*v

Therefore, the joint pdf for UU and V is given as,

g(u,v)=λ2veλv, 0<u<1, v>0g(u,v)=\lambda^2ve^{-\lambda v},\space 0\lt u\lt1,\space v\gt 0

0, elsewhere0, \space elsewhere


ii)ii) The marginal distributions of the random variables are obtained as described below.

Given that the joint pdf is given by,

g(u,v)=λ2veλv, 0<u<1,v>0g(u,v)=\lambda^2ve^{-\lambda v}, \space 0\lt u\lt 1, v\gt0 ,

Then the marginal distribution of the random variable VV is given as,

h(v)=01g(u,v)duh(v)=\int^1_0g(u,v)du

h(v)=01(λ2veλv)duh(v)=\int^1_0(\lambda^2ve^{-\lambda v})du


h(v)=(λ2veλv)u01=λ2veλvh(v)=(\lambda^2ve^{-\lambda v})*u|^1_0=\lambda^2ve^{-\lambda v}

Therefore,

h(v)=λ2veλv, v>0h(v)=\lambda^2ve^{-\lambda v},\space v\gt0

0, elsewhere0,\space elsewhere

and the marginal distribution of the random variable UUis given as,

f(u)=0g(u,v)dvf(u)=\int^\infin_0g(u,v)dv

f(u)=0λ2veλvdvf(u)=\int^\infin_0\lambda^2ve^{-\lambda v}dv

Let us evaluate the integral first,

0λ2veλvdv=λ20veλvdv\int^\infin_0\lambda^2ve^{-\lambda v}dv=\lambda^2\int^\infin_0ve^{-\lambda v}dv

This integral can be solved using integration by parts method as below,

Let

x=vx=v and dy/dv=eλvdy/dv=e^{-\lambda v}

we need to find dx/dvdx/dv and yy

dx/dv=1dx/dv=1 and y=eλvdv=(1/λ)eλvy=\int e^{-\lambda v }dv=-(1/\lambda)e^{-\lambda v}

Thus the integral can be written as,

λ20veλvdv=λ2((v/λ)eλv0+(1/λ)0eλvdv)\lambda^2\int^\infin_0ve^{-\lambda v}dv=\lambda^2((-v/\lambda)e^{-\lambda v}|^\infin_0+(1/\lambda)\int^\infin_0 e^{-\lambda v}dv)


=λ2((v/λ)eλv(1/λ2)eλv)0=\lambda^2(-(v/\lambda)e^{-\lambda v}-(1/\lambda^2)e^{-\lambda v})|^\infin_0


=λ2(1/λ2)=1=\lambda^2(1/\lambda^2)=1

Therefore the marginal distribution for the random variable UU given as,

f(u)=1, 0<u<1f(u)=1,\space 0\lt u\lt 1

0, elsewhere0, \space elsewhere


iii)iii)

If the random variables UUand VV are independent then we expect that their joint probability distribution functiong(u,v)g(u,v) must equal the product of their marginal distribution functions as written below.

If UU and VVare independent then,

g(u,v)=h(v)f(u)g(u,v)=h(v)*f(u)

so,

λ2veλv=1λ2veλv\lambda^2ve^{-\lambda v}=1*\lambda^2ve^{-\lambda v}

Since the product of the marginal distributions is equal to the joint distribution then, UU and VV are independent.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS