The random variables X and Y have joint p.d.f given by
f(x,y)=k, 0<x<y<2 zero otherwise
i) Obtain the value of the constant k
ii)Find the conditional variance of Y given X=x
i)
"\\displaystyle\\int_{0}^{2}\\displaystyle\\int_{x}^{2}kdydx=1"
"k\\displaystyle\\int_{0}^{2}[y]dx\\begin{matrix}\n 2 \\\\\n x\n\\end{matrix}=1"
"k[2x-\\dfrac{x^2}{2}]\\begin{matrix}\n 2 \\\\\n 0\n\\end{matrix}=1"
"k=\\dfrac{1}{2}"
ii)
Thus for "0\\leq x\\leq 2" we obtain
"E(Y|x)=\\displaystyle\\int_{x}^2y(\\dfrac{1}{2-x})dy=\\dfrac{4-x^2}{2(2-x)}=\\dfrac{2+x}{2}"
"E(Y^2|x)=\\displaystyle\\int_{x}^2y^2(\\dfrac{1}{2-x})dy=\\dfrac{8-x^3}{3(2-x)}=\\dfrac{4+x+x^2}{3}"
"Var(Y|X=x)=E(Y^2|x)-(E(Y^2|x))^2"
"=\\dfrac{4+x+x^2}{3}-(\\dfrac{2+x}{2})^2"
"=\\dfrac{16+4x+4x^2-12-12x-3x^2}{12}"
"=\\dfrac{x^2-8x+4}{12}"
Comments
Leave a comment