Question #252300

state two conditions for the function f(x,y) to be a continuous joint probability distribution of the continuous random variable x and y


1
Expert's answer
2021-10-25T17:48:57-0400

If random variables XX and YY are continuous and are defined on the same sample space SS, then, their joint probability density function(pdf) is a continuous function given by,

f(x,y)f(x,y). The function f(x,y)f(x,y) must satisfy the following conditions.

  • f(x,y)0,(x,y)R2f(x,y)\geqslant0,\forall(x,y)\in\R^2
  • R2f(x,y)dxdy=1\displaystyle\iint_{\R^2}f(x,y)dxdy=1


where R2\R^2 is the set of pairs of real numbers given as,

R2=RR={(x,y):x and y are real numbers}\R^2=\R*\R=\{(x,y):x\space and \space y\space are\space real\space numbers\}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS