Answer to Question #248496 in Statistics and Probability for Jac

Question #248496

Given the joint density function


f(x,y) = {6-x-y / 8 ; 0<x<2, 2<y<4,

{0, elsewhere,


find P(1<Y<3 | X=1).


1
Expert's answer
2021-10-14T15:27:56-0400

Solution.

Such as a range of Y is (2,4), then

P(1<Y<3X=1)=P(1<Y<2X=1)+P(2<Y<3X=1)=0+P(2<Y<3X=1)P(1<Y<3|X=1)=P(1<Y<2|X=1) +P(2<Y<3|X=1) = 0+ P(2<Y<3|X=1) \newline \text{}

It is known that the conditional probability can be calculated by the formula

f(yx)=f(x,y)g(x).f(y|x)=\frac{f(x,y)}{g(x)}.


Find g(x)=246xy8dy=3x4,g(x)=\int_2^4\frac{6-x-y}{8}dy=\frac{3-x}{4}, where 0<x<2.

Find f(y|x), where x=1:P(2<Y<3X=1)=23(6xy8:3x4)dyx=1=(54yy28)23=15498104+48=5458=58.P(2<Y<3|X=1)=\int_2^3(\frac{6-x-y}{8}:\frac{3-x}{4})dy|_{x=1}=(\frac{5}{4}y-\frac{y^2}{8})|_2^3=\frac{15}{4}-\frac{9}{8}-\frac{10}{4}+\frac{4}{8}=\frac{5}{4}-\frac{5}{8}=\frac{5}{8}. Answer. 58.\frac{5}{8}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment