If the Poisson distribution is bimodal, the two modes are at the points x=λ-1 and x=λ, where λ is the parameter of the Poisson distribution.
x=1x=2λ=2P(X=x)=e−λλxx!P(X=1)=2e−2P(X=2)=e−2222!=2e−2x=1 \\ x=2 \\ λ=2 \\ P(X=x) = \frac{e^{-λ}λ^x}{x!} \\ P(X=1) = 2e^{-2} \\ P(X=2) = \frac{e^{-2}2^2}{2!} = 2e^{-2}x=1x=2λ=2P(X=x)=x!e−λλxP(X=1)=2e−2P(X=2)=2!e−222=2e−2
Required probability =P(X=1)+P(X=2)=2e−2+2e−2=0.542= P(X=1) + P(X=2) = 2e^{-2} +2e^{-2} = 0.542=P(X=1)+P(X=2)=2e−2+2e−2=0.542
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment