If the Poisson distribution is bimodal, the two modes are at the points x=λ-1 and x=λ, where λ is the parameter of the Poisson distribution.
"x=1 \\\\\n\nx=2 \\\\\n\n\u03bb=2 \\\\\n\nP(X=x) = \\frac{e^{-\u03bb}\u03bb^x}{x!} \\\\\n\nP(X=1) = 2e^{-2} \\\\\n\nP(X=2) = \\frac{e^{-2}2^2}{2!} = 2e^{-2}"
Required probability "= P(X=1) + P(X=2) = 2e^{-2} +2e^{-2} = 0.542"
Comments
Leave a comment