QUESTION
Suppose a population consists of the five measurements: 2, 6, 8, 0, and 1:
1. What is the mean and standard deviation of the population?
2. How many different samples of size n=2 can be drawn from the population? List them with their corresponding means.
SAMPLE MEAN
3. Construct the sampling distribution of the sample means.
4. What is the mean of the sampling distribution of te sample means? Compare this to the mean of the population.
5. What is the standard deviation of the sampling distribution of the sample means? Vompare this to the standard deviation of the population.
SOLUTION
1. Mean
μ = 2 + 6 + 8 + 0 + 1 5 = 3.4 \mu=\dfrac{2+6+8+0+1}{5}=3.4 μ = 5 2 + 6 + 8 + 0 + 1 = 3.4 Variance
σ 2 = 1 5 ( ( 2 − 3.4 ) 2 + ( 6 − 2.4 ) 2 + ( 8 − 3.4 ) 2 \sigma^2=\dfrac{1}{5}\big((2-3.4)^2+(6-2.4)^2+(8-3.4)^2 σ 2 = 5 1 ( ( 2 − 3.4 ) 2 + ( 6 − 2.4 ) 2 + ( 8 − 3.4 ) 2 ( 0 − 3.4 ) 2 + ( 1 − 3.4 ) 2 ) = 9.44 (0-3.4)^2+(1-3.4)^2\big)=9.44 ( 0 − 3.4 ) 2 + ( 1 − 3.4 ) 2 ) = 9.44
Standard deviation
σ = σ 2 = 9.44 ≈ 3.0725 \sigma=\sqrt{\sigma^2}=\sqrt{9.44}\approx3.0725 σ = σ 2 = 9.44 ≈ 3.0725
2. We have population values 2 , 6 , 8 , 0 , 1 2,6,8,0,1 2 , 6 , 8 , 0 , 1 population size N = 5 N=5 N = 5 and sample size n = 2. n=2. n = 2. Thus, the number of possible samples which can be drawn without replacement is
( N n ) = ( 5 2 ) = 10 \dbinom{N}{n}=\dbinom{5}{2}=10 ( n N ) = ( 2 5 ) = 10 S a m p l e S a m p l e S a m p l e m e a n N o . v a l u e s ( X ˉ ) 1 2 , 6 4 2 2 , 8 5 3 2 , 0 1 4 2 , 1 1.5 5 6 , 8 7 6 6 , 0 3 7 6 , 1 3.5 8 8 , 0 4 9 8 , 1 4.5 10 0 , 1 0.5 \def\arraystretch{1.5}
\begin{array}{c:c:c}
Sample & Sample & Sample \ mean \\
No. & values & (\bar{X}) \\ \hline
1 & 2,6 & 4 \\
\hdashline
2 & 2,8 & 5 \\
\hdashline
3 & 2,0 & 1 \\
\hdashline
4 & 2,1 & 1.5 \\
\hdashline
5 & 6,8 & 7 \\
\hdashline
6 & 6,0 & 3 \\
\hdashline
7 & 6,1 & 3.5 \\
\hdashline
8 & 8,0 & 4 \\
\hdashline
9 & 8,1 & 4.5 \\
\hdashline
10 & 0,1 & 0.5 \\ \hline
\end{array} S am pl e N o . 1 2 3 4 5 6 7 8 9 10 S am pl e v a l u es 2 , 6 2 , 8 2 , 0 2 , 1 6 , 8 6 , 0 6 , 1 8 , 0 8 , 1 0 , 1 S am pl e m e an ( X ˉ ) 4 5 1 1.5 7 3 3.5 4 4.5 0.5 3. The sampling distribution of the sample means.
X ˉ f f ( X ˉ ) X ˉ f ( X ˉ ) X ˉ 2 f ( X ˉ ) 1 / 2 1 1 / 10 1 / 20 1 / 40 1 1 1 / 10 2 / 20 4 / 40 3 / 2 1 1 / 10 3 / 20 9 / 40 3 1 1 / 10 6 / 20 36 / 40 7 / 2 1 1 / 10 7 / 20 49 / 40 4 2 2 / 10 16 / 20 128 / 40 9 / 2 1 1 / 10 9 / 20 81 / 40 5 1 1 / 10 10 / 20 100 / 40 7 1 1 / 10 14 / 20 196 / 40 T o t a l 10 1 68 / 20 604 / 40 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c}
\bar{X} & f & f(\bar{X}) & \bar{X}f(\bar{X})& \bar{X}^2f(\bar{X}) \\ \hline
1/2 & 1& 1/10 & 1/20 & 1/40 \\
\hdashline
1 & 1 & 1/10 & 2/20 & 4/40 \\
\hdashline
3/2 & 1 & 1/10 & 3/20 & 9/40 \\
\hdashline
3 & 1 & 1/10 & 6/20 & 36/40 \\
\hdashline
7/2 & 1 & 1/10 & 7/20 & 49/40 \\
\hdashline
4 & 2 & 2/10 & 16/20 & 128/40 \\
\hdashline
9/2 & 1& 1/10 & 9/20 & 81/40 \\
\hdashline
5 & 1& 1/10 & 10/20 & 100/40 \\
\hdashline
7 & 1 & 1/10 & 14/20 & 196/40 \\
\hdashline
Total & 10 & 1 & 68/20 & 604/40 \\ \hline
\end{array} X ˉ 1/2 1 3/2 3 7/2 4 9/2 5 7 T o t a l f 1 1 1 1 1 2 1 1 1 10 f ( X ˉ ) 1/10 1/10 1/10 1/10 1/10 2/10 1/10 1/10 1/10 1 X ˉ f ( X ˉ ) 1/20 2/20 3/20 6/20 7/20 16/20 9/20 10/20 14/20 68/20 X ˉ 2 f ( X ˉ ) 1/40 4/40 9/40 36/40 49/40 128/40 81/40 100/40 196/40 604/40 4.
E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 68 20 = 3.4 E(\bar{X})=\sum\bar{X}f(\bar{X})=\dfrac{68}{20}=3.4 E ( X ˉ ) = ∑ X ˉ f ( X ˉ ) = 20 68 = 3.4 The mean of the sampling distribution of the sample means is equal to the
the mean of the population.
E ( X ˉ ) = 3.4 = μ E(\bar{X})=3.4=\mu E ( X ˉ ) = 3.4 = μ 5.
V a r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 Var(\bar{X})=\sum\bar{X}^2f(\bar{X})-(\sum\bar{X}f(\bar{X}))^2 Va r ( X ˉ ) = ∑ X ˉ 2 f ( X ˉ ) − ( ∑ X ˉ f ( X ˉ ) ) 2 = 604 40 − ( 68 20 ) 2 = 1416 400 = 354 100 = 3.54 =\dfrac{604}{40}-(\dfrac{68}{20})^2=\dfrac{1416}{400}=\dfrac{354}{100}=3.54 = 40 604 − ( 20 68 ) 2 = 400 1416 = 100 354 = 3.54 V a r ( X ˉ ) = 354 100 ≈ 1.8815 \sqrt{Var(\bar{X})}=\sqrt{\dfrac{354}{100}}\approx1.8815 Va r ( X ˉ ) = 100 354 ≈ 1.8815 Verification:
V a r ( X ˉ ) = σ 2 n ( N − n N − 1 ) = 9.44 2 ( 5 − 2 5 − 1 ) Var(\bar{X})=\dfrac{\sigma^2}{n}(\dfrac{N-n}{N-1})=\dfrac{9.44}{2}(\dfrac{5-2}{5-1}) Va r ( X ˉ ) = n σ 2 ( N − 1 N − n ) = 2 9.44 ( 5 − 1 5 − 2 ) = 3.54 , T r u e =3.54, True = 3.54 , T r u e
Comments