Find the variance of the R.V. whose M.G.F is ((e-t)/12) * (2 + et + 6e3t + 3e6t)
"=M''(0)-(M'(0))^2"
"M(t)=\\dfrac{e^{-t}}{12}(2+e^t+6e^{3t}+3e^{6t})"
"=\\dfrac{2e^{-t}+1+6e^{2t}+3e^{5t}}{12}"
"M'(t)=\\dfrac{-2e^{-t}+12e^{2t}+15e^{5t}}{12}"
"M''(t)=\\dfrac{2e^{-t}+24e^{2t}+75e^{5t}}{12}"
"M'(0)=\\dfrac{-2+12+15}{12}=\\dfrac{25}{12}"
"M''(0)=\\dfrac{2+24+75}{12}=\\dfrac{101}{12}"
"Var(X)=\\sigma^2=\\dfrac{101}{12}-(\\dfrac{25}{12})^2"
"=\\dfrac{1212-625}{144}=\\dfrac{587}{144}"
Comments
Leave a comment