P(X1=x1,X2=x2)=P(X1=x1,X2≤x2)−P(X1=x1,X2<x2)
=P(X1=x1,X2≤x2)−P(X1=x1,X2≤x2−1)
P(X1=x1,X2≤x2)=P(X1≤x1,X2≤x2)−P(X1<x1,X2≤x2)
=P(X1≤x1,X2≤x2)−P(X1≤x1−1,X2≤x2)
=F(x1,x2)−F(x1−1,x2)
Similarly, P(X1=x1,X2≤x2−1)=F(x1,x2−1)−F(x1−1,x2−1).
Therefore,
P(X1=x1,X2=x2)=
=(F(x1,x2)−F(x1−1,x2))−(F(x1,x2−1)−F(x1−1,x2−1))
=F(x1,x2)−F(x1−1,x2)−F(x1,x2−1)+F(x1−1,x2−1)
Comments