Let
X=(X1,....Xn)
Y=(Y1,....Yn)
Z=(Z1,....Zn)
be any random vectors on the same probability space P=(Ω,Σ,μ)
Then covatiance matrix C(X+Y,Z)=
E((X+Y−E(X+Y))(Z−EZ)T)=E((X+Y−EX−EY))(Z−EZ)T)=E((X−EX)+(Y−EY))(Z−EZ)T)=E((X−EX)(Z−EZ)T+(Y−EY)(Z−EZ)T)=E((X−EX)(Z−EZ)T)+E((Y−EY)(Z−EZ)T)=C(X,Z)+C(Y,Z)
First identity is proved.
During proving property of random matrices V,W : E(V+W)=EV+EW have being applied.
2) For proving second statement we need in additional condition C(X,Y)=C(Y,X)
V(X+Y)=C(X+Y,X+Y)=]by\space 1]=C(X,X)+C(X,Y)+C(Y,X)+C(Y,Y)=\\
=V(X)+V(Y)+C(X,Y)+C(X,Y)^T=\\
[by\space asymption \space C(X,Y)=C(Y,X)]= \\
V(X)+V(Y)+2\cdot C(X,Y)
Comments