The probability density function (pdf) of an exponential distribution is
f(x,λ)={λe−λx0x≥0x<0
correlation coefficients:
between X and Y:
rXY=σXσYcov(X,Y)
for exponential distribution: σX=E(X)
cov(X,Y)=E(XY)−E(X)E(Y)=E(XY)−2
rXY=2E(XY)−2
between y and z:
rYZ=σYσZcov(Y,Z)
for exponential distribution: σY=E(Y), σZ=E(Z)
cov(Y,Z)=E(YZ)−E(Y)E(Z)=E(YZ)−6
rYZ=6E(YZ)−6
between y and z:
rXZ=σXσZcov(X,Z)
cov(X,Z)=E(XZ)−E(X)E(Z)=E(XZ)−3
rXZ=3E(XZ)−3
Correlation matrix:
Comments