Question #242216

Suppose (X,Y,Z)^T has exponential distribution with mean vector (1,2,3)^T . Find the correlation matrix of (X,Y,Z)^T .


1
Expert's answer
2021-10-10T18:25:24-0400

The probability density function (pdf) of an exponential distribution is

f(x,λ)={λeλxx00x<0f(x,\lambda)=\begin{cases} \lambda e^{-\lambda x} &x\ge0 \\ 0&x<0 \end{cases}



correlation coefficients:


between X and Y:

rXY=cov(X,Y)σXσYr_{XY}=\frac{cov(X,Y)}{\sigma_X \sigma_Y}

for exponential distribution: σX=E(X)\sigma_X=E(X)

cov(X,Y)=E(XY)E(X)E(Y)=E(XY)2cov(X,Y)=E(XY)-E(X)E(Y)=E(XY)-2

rXY=E(XY)22r_{XY}=\frac{E(XY)-2}{2}


between y and z:

rYZ=cov(Y,Z)σYσZr_{YZ}=\frac{cov(Y,Z)}{\sigma_Y \sigma_Z}

for exponential distribution: σY=E(Y), σZ=E(Z)\sigma_Y=E(Y),\ \sigma_Z=E(Z)

cov(Y,Z)=E(YZ)E(Y)E(Z)=E(YZ)6cov(Y,Z)=E(YZ)-E(Y)E(Z)=E(YZ)-6

rYZ=E(YZ)66r_{YZ}=\frac{E(YZ)-6}{6}


between y and z:

rXZ=cov(X,Z)σXσZr_{XZ}=\frac{cov(X,Z)}{\sigma_X \sigma_Z}

cov(X,Z)=E(XZ)E(X)E(Z)=E(XZ)3cov(X,Z)=E(XZ)-E(X)E(Z)=E(XZ)-3

rXZ=E(XZ)33r_{XZ}=\frac{E(XZ)-3}{3}


Correlation matrix:





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS