Suppose (X,Y,Z)^T has exponential distribution with mean vector (1,2,3)^T . Find the correlation matrix of (X,Y,Z)^T .
The probability density function (pdf) of an exponential distribution is
"f(x,\\lambda)=\\begin{cases}\n \\lambda e^{-\\lambda x} &x\\ge0 \\\\\n 0&x<0\n\\end{cases}"
correlation coefficients:
between X and Y:
"r_{XY}=\\frac{cov(X,Y)}{\\sigma_X \\sigma_Y}"
for exponential distribution: "\\sigma_X=E(X)"
"cov(X,Y)=E(XY)-E(X)E(Y)=E(XY)-2"
"r_{XY}=\\frac{E(XY)-2}{2}"
between y and z:
"r_{YZ}=\\frac{cov(Y,Z)}{\\sigma_Y \\sigma_Z}"
for exponential distribution: "\\sigma_Y=E(Y),\\ \\sigma_Z=E(Z)"
"cov(Y,Z)=E(YZ)-E(Y)E(Z)=E(YZ)-6"
"r_{YZ}=\\frac{E(YZ)-6}{6}"
between y and z:
"r_{XZ}=\\frac{cov(X,Z)}{\\sigma_X \\sigma_Z}"
"cov(X,Z)=E(XZ)-E(X)E(Z)=E(XZ)-3"
"r_{XZ}=\\frac{E(XZ)-3}{3}"
Correlation matrix:
Comments
Leave a comment