Question #241176

Draw all possible samples of size 2 from samples  10   20  30   40   50 with replacement .

Prove that mean of samples mean is same as the population mean and form empirical relation between samples variance and population variance.


1
Expert's answer
2021-09-24T06:39:05-0400

In total there are 52=255^2=25 samples or pairs which are possible

SampleMeanSampleMean(10,10)10(10,20)15(10,30)20(10,40)25(10,50)30(20,10)15(20,20)20(20,30)25(20,40)30(20,50)35(30,10)20(30,20)25(30,30)30(30,40)35(30,50)40(40,10)25(40,20)30(40,30)35(40,40)40(40,50)45(50,10)30(50,20)35(50,30)40(50,40)45(50,50)50\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:} Sample & Mean & & Sample & Mean & & \\ \hline (10,10) & 10 & & (10,20) & 15 \\ \hdashline (10,30) & 20 & & (10,40) & 25 \\ \hdashline (10,50) & 30 & & (20,10) & 15 \\ \hdashline (20,20) & 20 & & (20,30) & 25 \\ \hdashline (20,40) & 30 & & (20,50) & 35 \\ \hdashline (30,10) & 20 & & (30,20) & 25 \\ \hdashline (30,30) & 30 & & (30,40) & 35 \\ \hdashline (30,50) & 40 & & (40,10) & 25 \\ \hdashline (40,20) & 30 & & (40,30) & 35 \\ \hdashline (40,40) & 40 & & (40,50) & 45 \\ \hdashline (50,10) & 30 & & (50,20) & 35 \\ \hdashline (50,30) & 40 & & (50,40) & 45 \\ \hdashline (50,50) & 50 & & \\ \end{array}

The table shows that there are nine possible values of the sample mean Xˉ.\bar{X}.


xˉp(xˉ)101/25152/25203/25254/25305/25354/25403/25452/25501/25\def\arraystretch{1.5} \begin{array}{c:c} \bar{x} & p(\bar{x}) \\ \hline 10 & 1/25 \\ 15 & 2/25 \\ 20 & 3/25 \\ 25 & 4/25 \\ 30 & 5/25 \\ 35 & 4/25 \\ 40 & 3/25 \\ 45 & 2/25 \\ 50 & 1/25 \\ \end{array}

μXˉ=ixˉip(xˉi)=10(125)+15(225)+20(325)\mu_{\bar{X}}=\sum_i\bar{x}_ip(\bar{x}_i)=10(\dfrac{1}{25})+15(\dfrac{2}{25})+20(\dfrac{3}{25})

+25(425)+30(525)+35(425)+40(325)+45(225)+25(\dfrac{4}{25})+30(\dfrac{5}{25})+35(\dfrac{4}{25})+40(\dfrac{3}{25})+45(\dfrac{2}{25})

+50(125)=30+50(\dfrac{1}{25})=30

ixˉi2p(xˉi)=(10)2(125)+(15)2(225)+(20)2(325)\sum_i\bar{x}_i^2p(\bar{x}_i)=(10)^2(\dfrac{1}{25})+(15)^2(\dfrac{2}{25})+(20)^2(\dfrac{3}{25})

+(25)2(425)+(30)2(525)+(35)2(425)+(40)2(325)+(25)^2(\dfrac{4}{25})+(30)^2(\dfrac{5}{25})+(35)^2(\dfrac{4}{25})+(40)^2(\dfrac{3}{25})

+(45)2(225)+(50)2(125)=1000+(45)^2(\dfrac{2}{25})+(50)^2(\dfrac{1}{25})=1000

Var(Xˉ)=σXˉ2=ixˉi2p(xˉi)(ixˉip(xˉi))2Var(\bar{X})=\sigma_{\bar{X}}^2=\sum_i\bar{x}_i^2p(\bar{x}_i)-(\sum_i\bar{x}_ip(\bar{x}_i))^2

=1000(30)2=100=1000-(30)^2=100

σXˉ=σXˉ2=100=10\sigma_{\bar{X}}=\sqrt{\sigma_{\bar{X}}^2}=\sqrt{100}=10

μ=10+20+30+40+505=30\mu=\dfrac{10+20+30+40+50}{5}=30

In sampling with replacement the mean of all sample means equals the mean of the population:

μXˉ=30=μ\mu_{\bar{X}}=30=\mu

σ2=15((1030)2+(2030)2+(3030)2\sigma^2=\dfrac{1}{5}((10-30)^2+(20-30)^2+(30-30)^2

+(4030)2+(5030)2)=200+(40-30)^2+(50-30)^2)=200

When sampling with replacement the variation of all sample means equals the variation of the population divided by the sample size 


σXˉ2=σ2n\sigma_{\bar{X}}^2=\dfrac{\sigma^2}{n}

100=2002100=\dfrac{200}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS