In total there are 52=25 samples or pairs which are possible
Sample(10,10)(10,30)(10,50)(20,20)(20,40)(30,10)(30,30)(30,50)(40,20)(40,40)(50,10)(50,30)(50,50)Mean10203020302030403040304050Sample(10,20)(10,40)(20,10)(20,30)(20,50)(30,20)(30,40)(40,10)(40,30)(40,50)(50,20)(50,40)Mean152515253525352535453545 The table shows that there are nine possible values of the sample mean Xˉ.
xˉ101520253035404550p(xˉ)1/252/253/254/255/254/253/252/251/25
μXˉ=i∑xˉip(xˉi)=10(251)+15(252)+20(253)
+25(254)+30(255)+35(254)+40(253)+45(252)
+50(251)=30
i∑xˉi2p(xˉi)=(10)2(251)+(15)2(252)+(20)2(253)
+(25)2(254)+(30)2(255)+(35)2(254)+(40)2(253)
+(45)2(252)+(50)2(251)=1000
Var(Xˉ)=σXˉ2=i∑xˉi2p(xˉi)−(i∑xˉip(xˉi))2
=1000−(30)2=100
σXˉ=σXˉ2=100=10
μ=510+20+30+40+50=30In sampling with replacement the mean of all sample means equals the mean of the population:
μXˉ=30=μ
σ2=51((10−30)2+(20−30)2+(30−30)2
+(40−30)2+(50−30)2)=200When sampling with replacement the variation of all sample means equals the variation of the population divided by the sample size
σXˉ2=nσ2
100=2200
Comments