In total there are 5 2 = 25 5^2=25 5 2 = 25 samples or pairs which are possible
S a m p l e M e a n S a m p l e M e a n ( 10 , 10 ) 10 ( 10 , 20 ) 15 ( 10 , 30 ) 20 ( 10 , 40 ) 25 ( 10 , 50 ) 30 ( 20 , 10 ) 15 ( 20 , 20 ) 20 ( 20 , 30 ) 25 ( 20 , 40 ) 30 ( 20 , 50 ) 35 ( 30 , 10 ) 20 ( 30 , 20 ) 25 ( 30 , 30 ) 30 ( 30 , 40 ) 35 ( 30 , 50 ) 40 ( 40 , 10 ) 25 ( 40 , 20 ) 30 ( 40 , 30 ) 35 ( 40 , 40 ) 40 ( 40 , 50 ) 45 ( 50 , 10 ) 30 ( 50 , 20 ) 35 ( 50 , 30 ) 40 ( 50 , 40 ) 45 ( 50 , 50 ) 50 \def\arraystretch{1.5}
\begin{array}{c:c:c:c:c:}
Sample & Mean & & Sample & Mean & & \\ \hline
(10,10) & 10 & & (10,20) & 15 \\
\hdashline
(10,30) & 20 & & (10,40) & 25 \\
\hdashline
(10,50) & 30 & & (20,10) & 15 \\
\hdashline
(20,20) & 20 & & (20,30) & 25 \\
\hdashline
(20,40) & 30 & & (20,50) & 35 \\
\hdashline
(30,10) & 20 & & (30,20) & 25 \\
\hdashline
(30,30) & 30 & & (30,40) & 35 \\
\hdashline
(30,50) & 40 & & (40,10) & 25 \\
\hdashline
(40,20) & 30 & & (40,30) & 35 \\
\hdashline
(40,40) & 40 & & (40,50) & 45 \\
\hdashline
(50,10) & 30 & & (50,20) & 35 \\
\hdashline
(50,30) & 40 & & (50,40) & 45 \\
\hdashline
(50,50) & 50 & & \\
\end{array} S am pl e ( 10 , 10 ) ( 10 , 30 ) ( 10 , 50 ) ( 20 , 20 ) ( 20 , 40 ) ( 30 , 10 ) ( 30 , 30 ) ( 30 , 50 ) ( 40 , 20 ) ( 40 , 40 ) ( 50 , 10 ) ( 50 , 30 ) ( 50 , 50 ) M e an 10 20 30 20 30 20 30 40 30 40 30 40 50 S am pl e ( 10 , 20 ) ( 10 , 40 ) ( 20 , 10 ) ( 20 , 30 ) ( 20 , 50 ) ( 30 , 20 ) ( 30 , 40 ) ( 40 , 10 ) ( 40 , 30 ) ( 40 , 50 ) ( 50 , 20 ) ( 50 , 40 ) M e an 15 25 15 25 35 25 35 25 35 45 35 45 The table shows that there are nine possible values of the sample mean X ˉ . \bar{X}. X ˉ .
x ˉ p ( x ˉ ) 10 1 / 25 15 2 / 25 20 3 / 25 25 4 / 25 30 5 / 25 35 4 / 25 40 3 / 25 45 2 / 25 50 1 / 25 \def\arraystretch{1.5}
\begin{array}{c:c}
\bar{x} & p(\bar{x}) \\ \hline
10 & 1/25 \\
15 & 2/25 \\
20 & 3/25 \\
25 & 4/25 \\
30 & 5/25 \\
35 & 4/25 \\
40 & 3/25 \\
45 & 2/25 \\
50 & 1/25 \\
\end{array} x ˉ 10 15 20 25 30 35 40 45 50 p ( x ˉ ) 1/25 2/25 3/25 4/25 5/25 4/25 3/25 2/25 1/25
μ X ˉ = ∑ i x ˉ i p ( x ˉ i ) = 10 ( 1 25 ) + 15 ( 2 25 ) + 20 ( 3 25 ) \mu_{\bar{X}}=\sum_i\bar{x}_ip(\bar{x}_i)=10(\dfrac{1}{25})+15(\dfrac{2}{25})+20(\dfrac{3}{25}) μ X ˉ = i ∑ x ˉ i p ( x ˉ i ) = 10 ( 25 1 ) + 15 ( 25 2 ) + 20 ( 25 3 )
+ 25 ( 4 25 ) + 30 ( 5 25 ) + 35 ( 4 25 ) + 40 ( 3 25 ) + 45 ( 2 25 ) +25(\dfrac{4}{25})+30(\dfrac{5}{25})+35(\dfrac{4}{25})+40(\dfrac{3}{25})+45(\dfrac{2}{25}) + 25 ( 25 4 ) + 30 ( 25 5 ) + 35 ( 25 4 ) + 40 ( 25 3 ) + 45 ( 25 2 )
+ 50 ( 1 25 ) = 30 +50(\dfrac{1}{25})=30 + 50 ( 25 1 ) = 30
∑ i x ˉ i 2 p ( x ˉ i ) = ( 10 ) 2 ( 1 25 ) + ( 15 ) 2 ( 2 25 ) + ( 20 ) 2 ( 3 25 ) \sum_i\bar{x}_i^2p(\bar{x}_i)=(10)^2(\dfrac{1}{25})+(15)^2(\dfrac{2}{25})+(20)^2(\dfrac{3}{25}) i ∑ x ˉ i 2 p ( x ˉ i ) = ( 10 ) 2 ( 25 1 ) + ( 15 ) 2 ( 25 2 ) + ( 20 ) 2 ( 25 3 )
+ ( 25 ) 2 ( 4 25 ) + ( 30 ) 2 ( 5 25 ) + ( 35 ) 2 ( 4 25 ) + ( 40 ) 2 ( 3 25 ) +(25)^2(\dfrac{4}{25})+(30)^2(\dfrac{5}{25})+(35)^2(\dfrac{4}{25})+(40)^2(\dfrac{3}{25}) + ( 25 ) 2 ( 25 4 ) + ( 30 ) 2 ( 25 5 ) + ( 35 ) 2 ( 25 4 ) + ( 40 ) 2 ( 25 3 )
+ ( 45 ) 2 ( 2 25 ) + ( 50 ) 2 ( 1 25 ) = 1000 +(45)^2(\dfrac{2}{25})+(50)^2(\dfrac{1}{25})=1000 + ( 45 ) 2 ( 25 2 ) + ( 50 ) 2 ( 25 1 ) = 1000
V a r ( X ˉ ) = σ X ˉ 2 = ∑ i x ˉ i 2 p ( x ˉ i ) − ( ∑ i x ˉ i p ( x ˉ i ) ) 2 Var(\bar{X})=\sigma_{\bar{X}}^2=\sum_i\bar{x}_i^2p(\bar{x}_i)-(\sum_i\bar{x}_ip(\bar{x}_i))^2 Va r ( X ˉ ) = σ X ˉ 2 = i ∑ x ˉ i 2 p ( x ˉ i ) − ( i ∑ x ˉ i p ( x ˉ i ) ) 2
= 1000 − ( 30 ) 2 = 100 =1000-(30)^2=100 = 1000 − ( 30 ) 2 = 100
σ X ˉ = σ X ˉ 2 = 100 = 10 \sigma_{\bar{X}}=\sqrt{\sigma_{\bar{X}}^2}=\sqrt{100}=10 σ X ˉ = σ X ˉ 2 = 100 = 10
μ = 10 + 20 + 30 + 40 + 50 5 = 30 \mu=\dfrac{10+20+30+40+50}{5}=30 μ = 5 10 + 20 + 30 + 40 + 50 = 30 In sampling with replacement the mean of all sample means equals the mean of the population:
μ X ˉ = 30 = μ \mu_{\bar{X}}=30=\mu μ X ˉ = 30 = μ
σ 2 = 1 5 ( ( 10 − 30 ) 2 + ( 20 − 30 ) 2 + ( 30 − 30 ) 2 \sigma^2=\dfrac{1}{5}((10-30)^2+(20-30)^2+(30-30)^2 σ 2 = 5 1 (( 10 − 30 ) 2 + ( 20 − 30 ) 2 + ( 30 − 30 ) 2
+ ( 40 − 30 ) 2 + ( 50 − 30 ) 2 ) = 200 +(40-30)^2+(50-30)^2)=200 + ( 40 − 30 ) 2 + ( 50 − 30 ) 2 ) = 200 When sampling with replacement the variation of all sample means equals the variation of the population divided by the sample size
σ X ˉ 2 = σ 2 n \sigma_{\bar{X}}^2=\dfrac{\sigma^2}{n} σ X ˉ 2 = n σ 2
100 = 200 2 100=\dfrac{200}{2} 100 = 2 200
Comments