Draw all possible samples of size 2 with replacement from population : 2 4 6 8 10.
prove that population mean is same as samples mean.
In total there are "5^2=25" samples or pairs which are possible
"\\def\\arraystretch{1.5}\n \\begin{array}{c:c:c:c:c:}\n Sample & Mean & & Sample & Mean & & \\\\ \\hline\n (2,2) & 2 & & (2,4) & 3 \\\\\n \\hdashline\n (2,6) & 4 & & (2,8) & 5 \\\\\n \\hdashline\n (2,10) & 6 & & (4,2) & 3 \\\\\n \\hdashline\n (4,4) & 4 & & (4,6) & 5 \\\\\n \\hdashline\n (4,8) & 6 & & (4,10) & 7 \\\\\n \\hdashline\n (6,2) & 4 & & (6,4) & 5 \\\\\n \\hdashline\n (6,6) & 6 & & (6,8) & 7 \\\\\n \\hdashline\n (6,10) & 8 & & (8,2) & 5 \\\\\n \\hdashline\n (8,4) & 6 & & (8,6) & 7 \\\\\n \\hdashline\n (8,8) & 8 & & (8,10) & 9 \\\\\n \\hdashline\n (10,2) & 6 & & (10,4) & 7 \\\\\n \\hdashline\n (10,6) & 8 & & (10,8) & 9 \\\\\n \\hdashline\n (10,10) & 10 & & \\\\\n \n\\end{array}"
The table shows that there are nine possible values of the sample mean "\\bar{X}."
"\\mu_{\\bar{X}}=\\sum_i\\bar{x}_ip(\\bar{x}_i)=2(\\dfrac{1}{25})+3(\\dfrac{2}{25})+4(\\dfrac{3}{25})"
"+5(\\dfrac{4}{25})+6(\\dfrac{5}{25})+7(\\dfrac{4}{25})+8(\\dfrac{3}{25})+9(\\dfrac{2}{25})"
"+10(\\dfrac{1}{25})=6"
"\\sum_i\\bar{x}_i^2p(\\bar{x}_i)=(2)^2(\\dfrac{1}{25})+(3)^2(\\dfrac{2}{25})+(4)^2(\\dfrac{3}{25})"
"+(5)^2(\\dfrac{4}{25})+(6)^2(\\dfrac{5}{25})+(7)^2(\\dfrac{4}{25})+(8)^2(\\dfrac{3}{25})"
"+(9)^2(\\dfrac{2}{25})+(10)^2(\\dfrac{1}{25})=40"
"Var(\\bar{X})=\\sigma_{\\bar{X}}^2=\\sum_i\\bar{x}_i^2p(\\bar{x}_i)-(\\sum_i\\bar{x}_ip(\\bar{x}_i))^2"
"=40-(6)^2=4"
"\\sigma_{\\bar{X}}=\\sqrt{\\sigma_{\\bar{X}}^2}=\\sqrt{100}=10"
"\\mu=\\dfrac{2+4+6+8+10}{5}=6"
In sampling with replacement the mean of all sample means equals the mean of the population:
"\\mu_{\\bar{X}}=6=\\mu""\\sigma^2=\\dfrac{1}{5}((2-6)^2+(4-6)^2+(6-6)^2"
"+(8-6)^2+(10-6)^2)=8"
When sampling with replacement the variation of all sample means equals the variation of the population divided by the sample size
"4=\\dfrac{8}{2}"
Comments
Leave a comment