a)
"f(x)=\\begin{cases}\n 3x^{-4 },& x>1 \\\\\n 0, &elsewhere\n\\end{cases}"
"f(x)\\geq0," for all "x"
"\\displaystyle\\int_{-\\infin}^\\infin f(x)dx=\\displaystyle\\int_{1}^{\\infin}3x^{-4}dx=[-x^{-3}]\\begin{matrix}\n \\infin \\\\\n 1\n\\end{matrix}"
"=-0+1=1"
"f(x)\\geq0," for all "x"
"\\displaystyle\\int_{-\\infin}^\\infin f(x)dx=1"
Therefore the function "f(x)" is a valid density function.
b)
"F(x)=\\displaystyle\\int_{-\\infin}^x3t^{-4}dt=[-t^{-3}]\\begin{matrix}\n x \\\\\n 1\n\\end{matrix}=-x^{-3}+1" For "x>1"
"F(x)=\\displaystyle\\int_{1}^xf(t)dt"
"F(x)=\\begin{cases}\n0, & x\\leq1 \\\\\n -x^{-4 }+1,& x>1 \n\\end{cases}"
c)
"P(X>4)=\\displaystyle\\int_{4}^{\\infin}f(t)dt=[-x^{-3}]\\begin{matrix}\n \\infin \\\\\n 4\n\\end{matrix}"
"=-0+4^{-3}=\\dfrac{1}{64}=0.015625"The probability that a random particle from the manufactured fuel exceeds 4 micrometers
is "0.015625."
Comments
Leave a comment