Let T be a continuous random variable with pdf
f(x) = (1/10(e)-t/10 , : t ⩾ 0
(0, : x < 0
Define the continuous random variable by
(100, : 0 < T ⩽ 1
X= (50, : 1 < T ⩽ 3
(0, : T > 3
Find E(X)
we can use "\u222b^\u221e_{\n\u2212\u221e}\nfX(u)du=1:"
"1 \t=\u222b^\u221e_{\u2212\u221e}fX(u)du\\\\\n=\u222b^1_{\u22121}cu^2du\\\\\n=\\frac{2}{3}c."
"EX \t=\u222b^1_{\u22121}uf_X(u)du\\\\\n=\\frac{3}{2}\u222b^1_{\u22121}u^3du\\\\\n=0."
Comments
Leave a comment