The joint density function of two continuous random variable X and Y is
f(x, y) = (cx2 + xy/3 , : if 0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 2
( 0, : otherwise
(a) Find c.
(b) Find the marginal pdf of X and Y .
(c) Are X and Y independent (justify)?
a.
Since it is a pdf then,
"\\int"y"\\int"x f(x, y)dxdy=1
"\\intop"02"\\int"01 (cx2+xy/3) dxdy=1
"\\intop"02(( cx3/3+x2y/6)|01)dy=1
"\\int"02 (c/3+y/6)dy =1
(cy/3+y2/12)|02=1
=2c/3+4/12=1
2c/3=2/3
c=1
therefore, the joint density function is,
f(x, y) = (x2 + x*y/3 , : if 0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 2
( 0, : otherwise
b.
Let g(x) be the marginal distribution for random variable X, then its marginal distribution is defined by,
g(x)= "\\int"02 f(x, y)dy
="\\int"02 (x2 + x*y/3)dy
=(x2y+xy2/6)|02
=2x2+4x/6
therefore,
g(x) = (2x2+4x/6, : if 0⩽ x ⩽ 1,
( 0, : otherwise
Let h(y) be the marginal distribution for random variable Y, then its marginal distribution is defined by,
h(y)= "\\int"01 f(x, y)dx
= "\\int"01 (x2 + x*y/3)dx
=(x3/3+x2y/6)|01
=1/3+y/6
therefore,
h(y)= (1/3+y/6, : if 0 ⩽ y ⩽ 2
( 0, : otherwise
c.
To test for independence then the condition, E(XY)=E(X)*E(Y) must hold.
E(XY) = "\\int"y "\\int"x (x*y)* (f(x, y))dxdy
="\\int"02 "\\int"01 x*y*(x2 + x*y/3)dxdy
="\\int"02 "\\int"01(x3y+(x*y)2/3)dxdy
="\\int"02(x4y/4+x3y2/9)|01dy
="\\int"02(y/4+y2/9)dy
=(y2/8+y3/27)|02
=4/8+8/27
=172/216
=43/54
E(X)= "\\int"01 x*g(x)dx
="\\int"01 x(2x2+4x/6)dx
="\\int"01(2x3+4x2/6)dx
=(2x4/4+4x3/18)|01
=2/4+4/18
=26/36
=13/18
and
E(Y)="\\int"02 y*h(y)dy
="\\int"02 y(1/3+y/6)dy
="\\int"02(y/3+y2/6)dy
=(y2/6+y3/18)|02
=4/6+8/18
=20/18
=10/9
Let us know verify if the condition hold,
E(XY)= 43/54 and E(X)*E(Y)=13/18*10/9=65/81
Since E(XY) is not equal to E(X)*E(Y), then random variables X and Y are not independent.
Comments
Leave a comment