Answer to Question #236605 in Statistics and Probability for john k
Let X be a r.v with pdf f(x) = 3x^2, 0 < x < 1. Then
(a) Calculate the quantities E(X), E(X^2) and Var(X).
(b) If the r.v.Y is denoted by Y = 3X − 2, calculate the E(Y ) and Var(Y).
1
2021-09-14T11:23:03-0400
(a)
"E(X)=\\displaystyle\\int_{-\\infin}^{\\infin}xf(x)dx=\\displaystyle\\int_{0}^{1}x(3x^2)dx"
"=\\big[\\dfrac{3x^4}{4}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{3}{4}"
"E(X^2)=\\displaystyle\\int_{-\\infin}^{\\infin}x^2f(x)dx=\\displaystyle\\int_{0}^{1}x^2(3x^2)dx"
"=\\big[\\dfrac{3x^5}{5}\\big]\\begin{matrix}\n 1 \\\\\n 0\n\\end{matrix}=\\dfrac{3}{5}"
"Var(X)=E(X^2)-(E(X))^2"
"=\\dfrac{3}{5}-(\\dfrac{3}{4})^2=\\dfrac{3}{80}=0.0375"
(b)
"E(Y)=E(3X-2)=3E(X)-2"
"=3(\\dfrac{3}{5})-2=-\\dfrac{1}{5}=-0.2"
"Var(Y)=Var(3X-2)=(3)^2Var(X)"
"=9(\\dfrac{3}{80})=\\dfrac{27}{80}=0.3375"
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment