The article ”The statistics of Phytoxic Air Pollutants” suggests the log-normal distribution as a model for SO2 concentration above a certain forest. Suppose the parameter values are µ = 1.9 and σ = 0.9.
(a) What are the mean value and standard deviation of concentration?
(b) What is the probability that concentration is at most 10? Between 5 and 10?
Solution:
"\\mu=1.9,\\sigma=0.9"
(a) Mean and standard deviation of log-Normal distribution:
Mean"=e^{\\mu+\\sigma^2\/2}=e^{1.9+0.9^2\/2}=e^{2.305}=10.024"
Variance"=({e^{\\sigma}}^2-1)e^{2\\mu+\\sigma^2}=({e^{0.9}}^2-1)e^{2(1.9)+0.9^2}=125.394"
S.D"=\\sqrt{variance}=\\sqrt{125.394}=11.197"
(b) "X\\sim N(10.024,11.197)"
"P(X\\le10)=P(z\\le \\dfrac{10-10.024}{11.197})=P(z\\le0.002)=0.5008"
"P(5\\le X\\le10)=P(\\dfrac{5-10.024}{11.197}\\le z\\le \\dfrac{10-10.024}{11.197})"
"=P(-0.448\\le z\\le0.002)=P(z\\le 0.002)-P(z\\le -0.45)\n\\\\=P(z\\le 0.002-[1-P(z\\le 0.45)]\n\\\\=0.5008-1+0.67364\n\\\\=0.17444"
Comments
Leave a comment