Let X be the lifetime of the given electronic device. X has the exponential distribution with parameter "\\lambda = 1\/1000" means that "P(X>t)=e^{-\\lambda t}", for all "t>0".
(i) "P(X>1000)=e^{-1000\/1000}=e^{-1}=0.3679"
(ii) "P(X\\leq 1200)=1-e^{-1200\/1000}=1-e^{-1.2}=0.6988"
(iii) The probability dense function is
"f_X(t)=\\frac{d}{dt}P(X\\leq t)=\\frac{d}{dt}(1-e^{-\\lambda t})=\\lambda e^{-\\lambda t}"
The mean of the life of the electronic device is
"E(X)=\\int\\limits_{0}^{+\\infty}tf_X(t)dt=\\int\\limits_{0}^{+\\infty}t\\lambda e^{-\\lambda t}dt="
"=\\frac{1}{\\lambda}\\int\\limits_{0}^{+\\infty}\\lambda te^{-\\lambda t}d(\\lambda t)=\\frac{1}{\\lambda}\\int\\limits_{0}^{+\\infty} te^{- t}dt=\\frac{1}{\\lambda}=1000"
The mean of the squared X is
"E(X^2)=\\int\\limits_{0}^{+\\infty}t^2f_X(t)dt=\\int\\limits_{0}^{+\\infty} t^2 \\lambda e^{-\\lambda t}dt="
"=\\frac{1}{\\lambda^2}\\int\\limits_{0}^{+\\infty}(\\lambda t)^2e^{-\\lambda t}d(\\lambda t)=\\frac{1}{\\lambda^2}\\int\\limits_{0}^{+\\infty} t^2e^{- t}dt=\\frac{2}{\\lambda^2}=2\\cdot 10^6"
The variance of the life of the electronic device is
"Var(X)=E(X^2)-E(X)^2=2\\cdot 10^6-1000^2=10^6"
The standard deviation of the life of the electronic device is
"\\sigma_X=\\sqrt{Var(X)}=\\sqrt{10^6}=1000"
Comments
Leave a comment