We are given:
"\\mu =28,\\:\\sigma =2.25"
(a) We are required to find:(a) We are required to find:
"P(25 < x< 30 )"
Using the z-score formula, we have:
"P\\left(25<x<30\\right)=P\\left(\\frac{25-28}{2.25}<x<\\frac{30-20}{2.25}\\right)"
"=P\\left(-1.33<x<0.89\\right)"
"=P\\left(z<0.89\\right)-P\\left(z<-1.33\\right)"
Now using the standard normal table, we have:
"P\\left(25<x<30\\right)=P\\left(z<0.89\\right)-P\\left(z<-1.33\\right)"
"=0.8133-0.0918=0.7215"
(b) We are required to find:
"P\\left(x>32.5\\right)"
Now using the z-score formula, we have:
"P\\left(x>32.5\\right)=P\\left(z>\\frac{32.5-28}{2.25}\\right)"
"=P\\left(z>2\\right)"
Now using the standard normal table, we have:
"P(x>32.5)=P(z>2)=0.0228"
(c) We are required to find:
"P\\left(x<25\\cup x>32.5\\right)=P\\left(x<25\\right)+P\\left(x>32.5\\right)"
Using the z-score formula, we have:
"P\\left(x<25\\right)+P\\left(x>32.5\\right)=P\\left(z<\\frac{25-28}{2.25}\\right)+P\\left(z>\\frac{32.5-28}{2.25}\\right)\\:"
"=P\\left(z<-1.33\\right)+P\\left(z>2\\right)"
Now using the standard normal table, we have:
"P\\left(x<25\\right)+P\\left(x>32.5\\right)=P\\left(z<-1.33\\right)+P\\left(z>2\\right)\\:\\:"
"=0.0918+0.0228=0.1146"
Comments
Leave a comment