Question #234779

b) Phone calls enter the ”support desk” of an electricity supplying company on the average two every 3 minutes. If one assumes an approximate Poisson process:

(i) What is the probability of no calls in 3 minutes?

(ii) What is the probability of utmost 6 calls in a 9 minute period?

[2 marks] [2 marks]

c) Suppose the earnings of a laborer, denoted by X, are given by the following probability distribution.

 P(xi) 0 8/27

xi

 1 12/27

2 6/27 3 1/27

Find the laborer’s expected earnings and the variance of his earnings.


1
Expert's answer
2021-09-09T00:47:15-0400

Let X=X= the number of calls: XPo(λt).X\sim Po(\lambda t).

(i)


λt=2\lambda t=2

P(X=0)=eλt(λt)00!=e20.135335P(X=0)=\dfrac{e^{-\lambda t}(\lambda t)^0}{0!}=e^{-2}\approx0.135335

(ii)


λt=6\lambda t=6

P(X6)=P(X=0)+P(X=1)+P(X=2)P(X\leq6)=P(X=0)+P(X=1)+P(X=2)

+P(X=3)+P(X=4)+P(X=5)+P(X=6)+P(X=3)+P(X=4)+P(X=5)+P(X=6)

=eλt(λt)00!+eλt(λt)11!+eλt(λt)22!+eλt(λt)33!=\dfrac{e^{-\lambda t}(\lambda t)^0}{0!}+\dfrac{e^{-\lambda t}(\lambda t)^1}{1!}+\dfrac{e^{-\lambda t}(\lambda t)^2}{2!}+\dfrac{e^{-\lambda t}(\lambda t)^3}{3!}

+eλt(λt)44!+eλt(λt)55!+eλt(λt)66!+\dfrac{e^{-\lambda t}(\lambda t)^4}{4!}+\dfrac{e^{-\lambda t}(\lambda t)^5}{5!}+\dfrac{e^{-\lambda t}(\lambda t)^6}{6!}

=e6(1+6+18+36+54+64.8+64.8)=e^{-6}(1+6+18+36+54+64.8+64.8)

=224.6e60.606303=224.6e^{-6}\approx0.606303

c)


xi0123p(xi)8/2712/276/271/27\begin{matrix} x_i & 0 & 1 & 2 & 3\\ p(x_i) & 8/27 & 12/27 & 6/27 & 1/27 \end{matrix}

Check


827+1227+627+127=1\dfrac{8}{27}+\dfrac{12}{27}+\dfrac{6}{27}+\dfrac{1}{27}=1

E[X]=827(0)+1227(1)+627(2)+127(3)=1E[X]=\dfrac{8}{27}(0)+\dfrac{12}{27}(1)+\dfrac{6}{27}(2)+\dfrac{1}{27}(3)=1

E[X2]=827(0)2+1227(1)2+627(2)2+127(3)2=53E[X^2]=\dfrac{8}{27}(0)^2+\dfrac{12}{27}(1)^2+\dfrac{6}{27}(2)^2+\dfrac{1}{27}(3)^2=\dfrac{5}{3}

Var(X)=E[X2](E[X])2=53(1)2=23Var(X)=E[X^2]-(E[X])^2=\dfrac{5}{3}-(1)^2=\dfrac{2}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS