b) Phone calls enter the ”support desk” of an electricity supplying company on the average two every 3 minutes. If one assumes an approximate Poisson process:
(i) What is the probability of no calls in 3 minutes?
(ii) What is the probability of utmost 6 calls in a 9 minute period?
[2 marks] [2 marks]
c) Suppose the earnings of a laborer, denoted by X, are given by the following probability distribution.
P(xi) 0 8/27
xi
1 12/27
2 6/27 3 1/27
Find the laborer’s expected earnings and the variance of his earnings.
Let "X=" the number of calls: "X\\sim Po(\\lambda t)."
(i)
"P(X=0)=\\dfrac{e^{-\\lambda t}(\\lambda t)^0}{0!}=e^{-2}\\approx0.135335"
(ii)
"P(X\\leq6)=P(X=0)+P(X=1)+P(X=2)"
"+P(X=3)+P(X=4)+P(X=5)+P(X=6)"
"=\\dfrac{e^{-\\lambda t}(\\lambda t)^0}{0!}+\\dfrac{e^{-\\lambda t}(\\lambda t)^1}{1!}+\\dfrac{e^{-\\lambda t}(\\lambda t)^2}{2!}+\\dfrac{e^{-\\lambda t}(\\lambda t)^3}{3!}"
"+\\dfrac{e^{-\\lambda t}(\\lambda t)^4}{4!}+\\dfrac{e^{-\\lambda t}(\\lambda t)^5}{5!}+\\dfrac{e^{-\\lambda t}(\\lambda t)^6}{6!}"
"=e^{-6}(1+6+18+36+54+64.8+64.8)"
"=224.6e^{-6}\\approx0.606303"
c)
Check
"E[X]=\\dfrac{8}{27}(0)+\\dfrac{12}{27}(1)+\\dfrac{6}{27}(2)+\\dfrac{1}{27}(3)=1"
"E[X^2]=\\dfrac{8}{27}(0)^2+\\dfrac{12}{27}(1)^2+\\dfrac{6}{27}(2)^2+\\dfrac{1}{27}(3)^2=\\dfrac{5}{3}"
"Var(X)=E[X^2]-(E[X])^2=\\dfrac{5}{3}-(1)^2=\\dfrac{2}{3}"
Comments
Leave a comment