Solution:
βn=M(ξ−Mξ) — the n−th central moment.1)M(ξ−4)=−1.5Mξ=4−1.5=2.5M(ξ−Mξ)=0 — the first central moment.
2)M(ξ−4)2=17M(ξ−Mξ)2=Mξ2−(Mξ)2Mξ2−42=17Mξ2=33
M(ξ−Mξ)2=33−(2.5)2=26.75− the second central moment. 3) M(ξ−4)3=−30M(ξ−Mξ)3=M(ξ3−3ξ2Mξ+3ξ(Mξ)2−(Mξ)3)=Mξ3−3Mξ2Mξ+3(Mξ)3−(Mξ)3=Mξ3−3Mξ2Mξ+2(Mξ)3M(ξ−4)3=Mξ3−3⋅33⋅4+2⋅43=−30Mξ3=238
M(ξ−Mξ)3=238−3⋅33⋅2.5+2⋅(2.5)3=21.75− the third central moment
4)M(ξ−4)4=108
M(ξ−Mξ)4=M(ξ4−4ξ3Mξ+6ξ2(Mξ)2−4ξ(Mξ)3+(Mξ)4)==Mξ4−4Mξ3Mξ+6Mξ2(Mξ)2−4(Mξ)4+(Mξ)4==Mξ4−4Mξ3Mξ+6Mξ2(Mξ)2−3(Mξ)4M(ξ−4)4=Mξ4−4⋅238⋅4+6⋅33⋅42−3⋅44=108
Mξ4=1516M(ξ−2.5)4=1516−4⋅238⋅2.5+6⋅33⋅(2.5)2−3⋅(2.5)4=
256.3125−the fourth central moment.⇒σ≈5.17
A=σ3M(ξ−Mξ)3=138.3521.75=0.157−asymmetry of the distribution.E=σ4M(ξ−Mξ)4=715.5625256.3125=0.358−kurtosis of the distribution.
Comments