Question #233823
The recoded temperature in an engine is a r.v.X whose pdf is given by
f(x) = 
n(1 − x)
n−1
, : 0 < x < 1
0, : x < 0
where n ⩾ 1 is a known integer
(a) Show that f is indeed a pdf.
[3 Marks]
(b) Determine the corresponding cdf
1
Expert's answer
2021-09-07T02:50:58-0400

(a)


f(x)dx=01n(1x)n1dx\displaystyle\int_{-\infin}^{\infin}f(x)dx=\displaystyle\int_{0}^{1}n(1-x)^{n-1}dx

=[(1x)n]10=(01)=1,n1=[-(1-x)^n]\begin{matrix} 1 \\ 0 \end{matrix}=-(0-1)=1, n\geq1

Therefore f(x)f(x) is indeed a pdf.


(b)


F(x)=xf(t)dtF(x)=\displaystyle\int_{-\infin}^xf(t)dt

0<x<10<x<1


F(x)=0xn(1t)n1dt=[(1t)n]x0F(x)=\displaystyle\int_{0}^xn(1-t)^{n-1}dt=[-(1-t)^n]\begin{matrix} x \\ 0 \end{matrix}

=1(1x)n=1-(1-x)^n

F(x)={0x<01(1x)n0x<11x1F(x)=\begin{cases} 0 &x<0\\ 1-(1-x)^n & 0\leq x<1\\ 1 & x\geq 1 \end{cases}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS