Solution.
Given the following events:
"RR=All\\:side\\:Red"
"BB=All\\:side\\:Black"
"\\:RB=Red\\:and\\:Black\\:side"
"R=Upturned\\:side\\:of\\:the\\:chosen\\:card\\:is\\:red."
Based on the information given in the equation we have:
"P(R|RB)=\\frac{1}{2}"
"P(RB)=\\frac{1}{3}"
"P(BB)=\\frac{1}{3}"
"P(RR)=\\frac{1}{3}"
"P(R\/RR)=1"
"P(R\/BB)=0"
Using the results we have to find "P(RB\/R)"
Se we can say:
"P\\left(RB|R\\right)=\\frac{P\\left(RB\\cap NR\\right)}{P\\left(R\\right)}"
"=\\frac{P\\left(R|RB\\right)P\\left(RB\\right)}{P\\left(R|RB\\right)P\\left(RB\\right)+P\\left(R|BB\\right)P\\left(BB\\right)P\\left(R|RR\\right)P\\left(RR\\right)}"
By substituting values we get:
"P\\left(RB|R\\right)=\\frac{\\frac{1}{2}\\times \\frac{1}{3}}{\\left(\\frac{1}{2}\\times \\frac{1}{3}\\right)+\\left(0\\times \\frac{1}{3}\\right)+\\left(1\\times \\frac{1}{3}\\right)}=\\frac{1}{3}=0.3333"
The required probability is "=\\frac{1}{3}=0.3333"
Comments
Leave a comment