Let use the following problem.
The marginal pdf and expectations are as follows:
p(x)=∫yp(x,y)=∫1596xydy=96x∫15ydy=96x[2y2]15=96x[225−21]=8x0<x<4
The expectation of X is as follows:
E(X)=∫04x×8xdx=81∫04x2dx=81[3x3]04=81×343=38=2.6667p(y)=∫4p(x,y)=∫0496xydx=96y∫04xdx=96y[2x2]04=96y[216]=12y1<y<5E(y)=∫15y×12ydy=121∫15y2dx=121[3y3]15=121×353−1=931=3.4444p(x)×p(y)=8x×12y=96xy=p(x,y)
Thus, X and Y are independent.
E(XY)=E(x)×E(y)=38×931=27248=9.1852E(2X+3Y)=2E(x)+3E(y)=2×38+3×931=316+331=347=15.6667
Comments