Question #232394

The joint density function of two random variables X and Y is given by


1
Expert's answer
2021-09-07T16:39:03-0400

Let use the following problem.



The marginal pdf and expectations are as follows:

p(x)=yp(x,y)=15xy96dy=x9615ydy=x96[y22]15=x96[25212]=x8  0<x<4p(x) = \int_y p(x,y) \\ = \int^5_1 \frac{xy}{96} dy \\ = \frac{x}{96} \int^5_1 ydy \\ = \frac{x}{96} [\frac{y^2}{2}]^5_1 \\ = \frac{x}{96}[\frac{25}{2}-\frac{1}{2}] \\ = \frac{x}{8} \; 0<x<4

The expectation of X is as follows:

E(X)=04x×x8dx=1804x2dx=18[x33]04=18×433=83=2.6667p(y)=4p(x,y)=04xy96dx=y9604xdx=y96[x22]04=y96[162]=y12  1<y<5E(y)=15y×y12dy=11215y2dx=112[y33]15=112×5313=319=3.4444p(x)×p(y)=x8×y12=xy96=p(x,y)E(X) = \int^4_0x \times \frac{x}{8} dx \\ = \frac{1}{8} \int^4_0 x^2 dx \\ =\frac{1}{8}[\frac{x^3}{3}]^4_0 \\ =\frac{1}{8} \times \frac{4^3}{3} \\ = \frac{8}{3} \\ = 2.6667 \\ p(y) = \int_4 p(x,y) \\ = \int^4_0 \frac{xy}{96} dx \\ = \frac{y}{96} \int^4_0 x dx \\ = \frac{y}{96} [\frac{x^2}{2}]^4_0 \\ = \frac{y}{96} [\frac{16}{2}] \\ = \frac{y}{12} \; 1<y<5 \\ E(y) = \int^5_1 y \times \frac{y}{12}dy \\ = \frac{1}{12} \int^5_1 y^2 dx \\ = \frac{1}{12}[\frac{y^3}{3}]^5_1 \\ = \frac{1}{12} \times \frac{5^3 -1}{3} \\ = \frac{31}{9} \\ = 3.4444 \\ p(x) \times p(y) = \frac{x}{8} \times \frac{y}{12} \\ =\frac{xy}{96} \\ =p(x,y)

Thus, X and Y are independent.

E(XY)=E(x)×E(y)=83×319=24827=9.1852E(2X+3Y)=2E(x)+3E(y)=2×83+3×319=163+313=473=15.6667E(XY)=E(x) \times E(y) \\ = \frac{8}{3} \times \frac{31}{9} \\ = \frac{248}{27} \\ = 9.1852 \\ E(2X+3Y) = 2E(x) +3E(y) \\ = 2 \times \frac{8}{3} + 3 \times \frac{31}{9} \\ = \frac{16}{3} + \frac{31}{3} \\ = \frac{47}{3} \\ = 15.6667


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS