By condition,
a=192.5, σ=60.2a = 192.5,\,\,\sigma = 60.2a=192.5,σ=60.2
Let's find the probability
P(x>250)=Φ(∞)−Φ(250−aσ)=0.5−Φ(250−192.560.2)=0.5−Φ(0.96)≈0.5−0.3315=0.1685P(x > 250) = \Phi \left( \infty \right) - \Phi \left( {\frac{{250 - a}}{\sigma }} \right) = 0.5 - \Phi \left( {\frac{{250 - 192.5}}{{60.2}}} \right) = 0.5 - \Phi \left( {0.96} \right) \approx 0.5 - 0.3315 = 0.1685P(x>250)=Φ(∞)−Φ(σ250−a)=0.5−Φ(60.2250−192.5)=0.5−Φ(0.96)≈0.5−0.3315=0.1685
Since
0.1685⋅175000=29487.50.1685 \cdot 175000 = {\rm{29487}}{\rm{.5}}0.1685⋅175000=29487.5
Then the wanted number is 29487 (this number must be an integer)
Answer: 29487
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment