1. The density function of X is given by f(x) = {a + bx^2, 0< x <1 0 ,otherwise. . If E(x)=3/5 find a,b.
"E(x) = \\int\\limits_{ - \\infty }^{ + \\infty } {xf(x)dx} = \\int\\limits_0^1 {x(a + b{x^2}} )dx \\Rightarrow \\int\\limits_0^1 {\\left( {ax + b{x^3}} \\right)} dx = \\frac{3}{5} \\Rightarrow \\frac{1}{2}a\\left. {{x^2}} \\right|_0^1 + \\frac{1}{4}b\\left. {{x^4}} \\right|_0^1 = \\frac{3}{5} \\Rightarrow \\frac{a}{2} + \\frac{b}{4} = \\frac{3}{5} \\Rightarrow \\frac{{2a + b}}{4} = \\frac{3}{5} \\Rightarrow 2a + b = \\frac{{12}}{5}"
Next, we use the properties of the density function
"\\int\\limits_{ - \\infty }^{ + \\infty } {f(x)dx} = 1 \\Rightarrow \\int\\limits_0^1 {(a + b{x^2}} )dx = 1 \\Rightarrow a\\left. x \\right|_0^1 + \\frac{1}{3}b\\left. {{x^3}} \\right|_0^1 = 1 \\Rightarrow a + \\frac{1}{3}b = 1"
We have the system
"\\left\\{ \\begin{array}{l}\na + \\frac{1}{3}b = 1\\\\\n2a + b = \\frac{{12}}{5}\n\\end{array} \\right. \\Rightarrow \\left\\{ \\begin{array}{l}\n3a + b = 3\\\\\n10a + 5b = 12\n\\end{array} \\right. \\Rightarrow a = \\frac{3}{5},\\,\\,b = \\frac{6}{5}"
Answer: "a = \\frac{3}{5},\\,\\,b = \\frac{6}{5}"
Comments
Leave a comment