Question #230276

1.        The density function of X is given by f(x) = {a + bx^2, 0< x <1 0 ,otherwise. . If E(x)=3/5 find a,b.


1
Expert's answer
2021-08-30T07:56:10-0400

E(x)=+xf(x)dx=01x(a+bx2)dx01(ax+bx3)dx=3512ax201+14bx401=35a2+b4=352a+b4=352a+b=125E(x) = \int\limits_{ - \infty }^{ + \infty } {xf(x)dx} = \int\limits_0^1 {x(a + b{x^2}} )dx \Rightarrow \int\limits_0^1 {\left( {ax + b{x^3}} \right)} dx = \frac{3}{5} \Rightarrow \frac{1}{2}a\left. {{x^2}} \right|_0^1 + \frac{1}{4}b\left. {{x^4}} \right|_0^1 = \frac{3}{5} \Rightarrow \frac{a}{2} + \frac{b}{4} = \frac{3}{5} \Rightarrow \frac{{2a + b}}{4} = \frac{3}{5} \Rightarrow 2a + b = \frac{{12}}{5}

Next, we use the properties of the density function

+f(x)dx=101(a+bx2)dx=1ax01+13bx301=1a+13b=1\int\limits_{ - \infty }^{ + \infty } {f(x)dx} = 1 \Rightarrow \int\limits_0^1 {(a + b{x^2}} )dx = 1 \Rightarrow a\left. x \right|_0^1 + \frac{1}{3}b\left. {{x^3}} \right|_0^1 = 1 \Rightarrow a + \frac{1}{3}b = 1

We have the system

{a+13b=12a+b=125{3a+b=310a+5b=12a=35,b=65\left\{ \begin{array}{l} a + \frac{1}{3}b = 1\\ 2a + b = \frac{{12}}{5} \end{array} \right. \Rightarrow \left\{ \begin{array}{l} 3a + b = 3\\ 10a + 5b = 12 \end{array} \right. \Rightarrow a = \frac{3}{5},\,\,b = \frac{6}{5}

Answer: a=35,b=65a = \frac{3}{5},\,\,b = \frac{6}{5}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS