Suppose a function
X
on
R
is given as
X
(
ω
) =
1
5
−
ω
2
, ω
≤
=
7
1 +
ω
2
, ω >
1. Identify the range of
X
.
2. Find
X
−
1
(
B
) when
B
= (0
,
1),
B
= [1
,
3],
B
= 4,
B
= (2
,
4)
Part 1
"\\mathrm{The\\:set\\:of\\:values\\:of\\:the\\:dependent\\:variable\\:for\\:which\\:a\\:function\\:is\\:defined}\\\\\n\\mathrm{For\\:a\\:parabola}\\:ax^2+bx+c\\:\\mathrm{with\\:Vertex}\\:\\left(x_v,\\:y_v\\right)\\\\\n\\mathrm{If}\\:a<0\\:\\mathrm{the\\:range\\:is}\\:f\\left(x\\right)\\le \\:y_v\\\\\na=-1,\\:\\mathrm{Vertex}\\:\\left(x_v,\\:y_v\\right)=\\left(0,\\:15\\right)\\\\\nf\\left(x\\right)\\le \\:15\\\\\n\\mathrm{Range\\:of\\:}15-x^2:\\quad \\begin{bmatrix}\\mathrm{Solution:}\\:&\\:f\\left(x\\right)\\le \\:15\\:\\\\ \\:\\mathrm{Interval\\:Notation:}&\\:(-\\infty \\:,\\:15]\\end{bmatrix}"
Part 2
The function is "71+w^2dw"
"X=71+w^2\\\\\n\\implies \\mathrm{A\\:function\\:g\\:is\\:the\\:inverse\\:of\\:function\\:f\\:if\\:for}\\:y=f\\left(x\\right),\\:\\:x=g\\left(y\\right)\\:\\\\\nX=71+w^2\\\\\nw=71+X^2\\\\\nX^{-1}=\\sqrt{w-71}"
Comments
Leave a comment