Question #228738

Calculate the Karl Pearson’s coefficient of correlation from the following pairs of values and interpret the result: Values of X 12 9 8 10 11 13 7 Values of Y 14 8 6 9 11 12 3  


1
Expert's answer
2021-08-24T16:02:14-0400
Xˉ=iXin=707=10\bar{X}=\dfrac{\sum_iX_i}{n}=\dfrac{70}{7}=10

Yˉ=iYin=637=9\bar{Y}=\dfrac{\sum_iY_i}{n}=\dfrac{63}{7}=9

SSXX=i(XiXˉ)2=iXi2nXˉ2SS_{XX}=\sum_i(X_i-\bar{X})^2=\sum_iX_i^2-n\cdot\bar{X}^2

=7287(10)2=28=728-7(10)^2=28


SSYY=i(YiYˉ)2=iYi2nYˉ2SS_{YY}=\sum_i(Y_i-\bar{Y})^2=\sum_iY_i^2-n\cdot\bar{Y}^2

=6517(9)2=84=651-7(9)^2=84



SSXY=i(XiXˉ)(YiYˉ)=iXiYinXˉYˉSS_{XY}=\sum_i(X_i-\bar{X})(Y_i-\bar{Y})=\sum_iX_iY_i-n\cdot\bar{X}\bar{Y}

=6767(10)(9)=46=676-7(10)(9)=46

r=SSXYSSXXSSYY=462884r=\dfrac{SS_{XY}}{\sqrt{SS_{XX}}\sqrt{SS_{YY}}}=\dfrac{46}{\sqrt{28}\sqrt{84}}\approx

0.948504\approx0.948504

0.7<r10.7<r\leq1 means a strong positive correlation.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS