Calculate the Karl Pearson’s coefficient of correlation from the following pairs of values and interpret the result: Values of X 12 9 8 10 11 13 7 Values of Y 14 8 6 9 11 12 3
"\\bar{Y}=\\dfrac{\\sum_iY_i}{n}=\\dfrac{63}{7}=9"
"SS_{XX}=\\sum_i(X_i-\\bar{X})^2=\\sum_iX_i^2-n\\cdot\\bar{X}^2"
"=728-7(10)^2=28"
"=651-7(9)^2=84"
"=676-7(10)(9)=46"
"r=\\dfrac{SS_{XY}}{\\sqrt{SS_{XX}}\\sqrt{SS_{YY}}}=\\dfrac{46}{\\sqrt{28}\\sqrt{84}}\\approx"
"\\approx0.948504"
"0.7<r\\leq1" means a strong positive correlation.
Comments
Leave a comment