Question #226064

Random samples from two normal populations produced the following statistics:

S

2

1 D 350 n1 D 31 S

2

2 D 700 n2 D 31 D 0:05 H0 : 

2

1 D 

2

2

vs H1 : 

2

1 > 2

2

The statistician wants to test the quality of the two population variances. The 95% confidence

interval of ratio of two population variances is

1. .0:2415I 1:035/

2. .1:2415I 2:035/

3. .


1
Expert's answer
2021-09-02T07:25:07-0400
s12=350,n1=31,s22=700,n2=31s_1^2=350, n_1=31, s_2^2=700, n_2=31

The critical values for α=0.05\alpha=0.05 and df1=n11=311=30,df_1=n_1-1=31-1=30,

df2=n21=311=30df_2=n_2-1=31-1=30 degrees of freedom are:


FL=F1α/2,n21,n11=F10.05/2,311,311=0.4822F_L=F_{1-\alpha/2, n_2-1, n_1-1}=F_{1-0.05/2, 31-1, 31-1}=0.4822

FU=Fα/2,n21,n11=F0.05/2,311,311=2.0739F_U=F_{\alpha/2, n_2-1, n_1-1}=F_{0.05/2, 31-1, 31-1}=2.0739

The corresponding 95% confidence interval is computed as follows:


CI=(s12s22FL,s12s22FU)CI=(\dfrac{s_1^2}{s_2^2}F_L, \dfrac{s_1^2}{s_2^2}F_U)

=(350700×0.4822,350700×2.0739)=(\dfrac{350}{700}\times0.4822, \dfrac{350}{700}\times2.0739)

=(0.24110,1.03695)=(0.24110, 1.03695)

Therefore, based on the data provided, the 95% confidence interval for the ratio of the population variances is 0.2411<σ12σ22<1.0370.0.2411<\dfrac{\sigma_1^2}{\sigma_2^2}<1.0370. Therefore, we are 95% confident that the true ratio of population variances σ12σ22\dfrac{\sigma_1^2}{\sigma_2^2} is contained by the interval (0.2411,1.0370).(0.2411, 1.0370).


The 95% confidence interval of ratio of two population variances is


(0.2411,1.0370).(0.2411, 1.0370).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS